Summary of Formulas and Equations

Note: The order of the formulas follows the order of the chapters.

Quadratic Formula

If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Equation</th>
<th>Translation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Translation</td>
<td>$y = f(x) + k$</td>
<td>If $k > 0$, translate upward k units.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If $k < 0$, translate downward k units.</td>
</tr>
<tr>
<td>Horizontal Translation</td>
<td>$y = f(x - h)$</td>
<td>If $h > 0$, translate right h units.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If $h < 0$, translate left h units.</td>
</tr>
<tr>
<td>Vertical Stretch</td>
<td>$y = af(x)$</td>
<td>If $a > 1$, expand vertically by a factor of a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If $0 < a < 1$, compress vertically by a factor of a.</td>
</tr>
<tr>
<td>Horizontal Stretch</td>
<td>$y = f(kx)$</td>
<td>If $k > 1$, compress horizontally by a factor of $\frac{1}{k}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If $0 < k < 1$, expand horizontally by a factor of $\frac{1}{k}$.</td>
</tr>
</tbody>
</table>

Reflections

The graph of $y = -f(x)$ is the graph of $y = f(x)$ reflected in the x-axis.

The graph of $y = f(-x)$ is the graph of $y = f(x)$ reflected in the y-axis.

The graph of $x = f(y)$ is the graph of $y = f(x)$ reflected in the line $y = x$.

Trigonometry of Right Triangles

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$
Trigonometric Ratios of Angles

\[\sin \theta = \frac{y}{r} \]
\[\cos \theta = \frac{x}{r} \]
\[\tan \theta = \frac{y}{x} \]

The Sine Law and the Cosine Law

Sine Law
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]
\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\]

Cosine Law
\[
a^2 = b^2 + c^2 - 2bc \cos A
\]
\[
b^2 = a^2 + c^2 - 2ac \cos B
\]
\[
c^2 = a^2 + b^2 - 2ab \cos C
\]

Special Triangles

- **45°-45°-90°**
 - 1:1:1
 - \(\sqrt{2} \)\(^2\) = 2

- **30°-60°-90°**
 - 2:1:2
 - \(\sqrt{3} \)\(^2\) = 3

Summary of Formulas and Equations • M H R xxii
Special Values of Trigonometric Functions

<table>
<thead>
<tr>
<th>θ (degrees)</th>
<th>θ (radians)</th>
<th>sinθ</th>
<th>cosθ</th>
<th>tanθ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>π/6</td>
<td>1/2</td>
<td>√3/2</td>
<td>1/√3</td>
</tr>
<tr>
<td>45°</td>
<td>π/4</td>
<td>1/√2</td>
<td>1/√2</td>
<td>1</td>
</tr>
<tr>
<td>60°</td>
<td>π/3</td>
<td>√3/2</td>
<td>1/2</td>
<td>√3</td>
</tr>
<tr>
<td>90°</td>
<td>π/2</td>
<td>1</td>
<td>0</td>
<td>not defined</td>
</tr>
<tr>
<td>180°</td>
<td>π</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>270°</td>
<td>3π/2</td>
<td>-1</td>
<td>0</td>
<td>not defined</td>
</tr>
<tr>
<td>360°</td>
<td>2π</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Trigonometric Identities

Quotient Identity

\[\tan x = \frac{\sin x}{\cos x} \]

Pythagorean Identity

\[\sin^2 x + \cos^2 x = 1 \]
Trigonometric Functions

\[y = a \sin k(x - d) + c \]
\[y = a \cos k(x - d) + c \]

If \(a > 1 \), the graph is expanded vertically by a factor of \(a \).
If \(0 < a < 1 \), the graph is compressed vertically by a factor of \(a \).
The amplitude is \(|a| \).

If \(k > 1 \), the graph is compressed horizontally by a factor of \(\frac{1}{k} \).
If \(0 < k < 1 \), the graph is expanded horizontally by a factor of \(\frac{1}{k} \).

If \(d > 0 \), the graph is translated to the right \(d \) units.
If \(d < 0 \), the graph is translated to the left \(d \) units.

If \(c > 0 \), the graph is translated upward \(c \) units.
If \(c < 0 \), the graph is translated downward \(c \) units.

Sequences and Series

Arithmetic

\[a, a + d, a + 2d, a + 3d, \ldots \]
\[t_n = a + (n - 1)d \]
\[S_n = \frac{n}{2} [2a + (n - 1)d] \]
\[S_n = \frac{n}{2} (a + t_n) \]

Geometric

\[a, ar, ar^2, ar^3, \ldots \]
\[t_n = ar^{n-1} \]
\[S_n = \frac{a(r^n - 1)}{r - 1}, \quad r \neq 1 \]
Finance

Compound Interest

\[A = P (1 + i)^n \]

A is the amount at the end of the time for the investment or loan, P is the principal invested, i is the interest rate per compounding period, and n is the number of compounding periods.

Present Value

\[PV = \frac{A}{(1 + i)^n} \quad \text{or} \quad PV = A(1 + i)^{-n} \]

PV is the present value, A is the amount at the end of the investment, i is the interest rate per compounding period, and n is the number of compounding periods.

Amount of an Annuity

\[A = R \left[\frac{(1 + i)^n - 1}{i} \right] \]

A is the amount at the time of the last investment, R is the payment made at the end of each compounding period, n is the number of compounding periods, and i is the interest rate per compounding period.

Present Value of an Annuity

\[PV = R \left[1 - (1 + i)^{-n} \right] \]

PV is the present value, R is the payment made at the end of each compounding period, n is the number of compounding periods, and i is the interest rate per compounding period.

Length and Midpoint Formulas

Length of a line segment joining \((x_1, y_1)\) and \((x_2, y_2)\):

\[l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Midpoint of a line segment joining \((x_1, y_1)\) and \((x_2, y_2)\):

\[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]
Equations of Lines

Slope of a line: \(m = \frac{y_2 - y_1}{x_2 - x_1} \)

Point-slope form: \(y - y_1 = m(x - x_1) \)

Slope and y-intercept form: \(y = mx + b \)

Standard form: \(Ax + By + C = 0 \)

Conic Sections

Circle

\(x^2 + y^2 = r^2 \)

centre \((0, 0)\), radius \(r\)

\((x - h)^2 + (y - k)^2 = r^2 \)

centre \((h, k)\), radius \(r\)

Ellipse

\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), \(a > b > 0 \)

\(a^2 = b^2 + c^2 \)
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, \quad a > b > 0
\]
\[
a^2 = b^2 + c^2
\]

\[
\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1, \quad a > b > 0
\]
\[
a^2 = b^2 + c^2
\]

\[
\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1, \quad a > b > 0
\]
\[
a^2 = b^2 + c^2
\]
Hyperbola

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
\]

\[a^2 + b^2 = c^2\]
\[
\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \\
a^2 + b^2 = c^2
\]
Parabola

\[y = \frac{1}{4p} x^2 \]

\[x = \frac{1}{4p} y^2 \]

\[y - k = \frac{1}{4p} (x - h)^2 \]

\[x - h = \frac{1}{4p} (y - k)^2 \]