CHAPTER TEST

Achievement Chart

<table>
<thead>
<tr>
<th>Category</th>
<th>Knowledge/Understanding</th>
<th>Thinking/Inquiry/Problem Solving</th>
<th>Communication</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questions</td>
<td>All</td>
<td>11, 12, 13</td>
<td>5, 6, 13, 15</td>
<td>11, 12, 13</td>
</tr>
</tbody>
</table>

1. Given the formula for the nth term, state the first 5 terms of each sequence. Then, graph \(t_n \) or \(f(n) \) versus \(n \).
 a) \(t_n = 2n - 3 \)
 b) \(f(n) = n^2 + 3 \)

2. Given the formula for the nth term, find the twelfth term of each sequence.
 a) \(t_n = 4 + 3n \)
 b) \(f(n) = (n + 1)^2 \)

3. Find the indicated terms.
 a) \(t_n = 6n - 1; t_8 \) and \(t_{24} \)
 b) \(f(n) = 8 + 3n^2; t_6 \) and \(t_{20} \)

4. Given the formula for the nth term of each sequence, write the first 5 terms.
 a) \(t_n = 0.5n + 3 \)
 b) \(f(n) = 5 - 3n \)
 c) \(t_n = 6(2)^n - 1 \)
 d) \(f(n) = 10(-2)^{n-1} \)

5. Find the formula for the nth term that determines each sequence. Then, find \(t_{21} \).
 a) 6, 10, 14, 18, ...
 b) -5, -11, -17, -23, ...

6. Find the formula for the nth term that determines each sequence. Then, find \(t_8 \).
 a) 1, 4, 16, 64, ...
 b) 10 000, -5000, 2500, -1250, ...

7. Find the indicated sum for each arithmetic series.
 a) \(S_{15} \) for \(4 + 11 + 18 + ... \)
 b) \(S_{20} \) for \(99 + 88 + 77 + ... \)

8. Find the sum of the arithmetic series \(-12 - 9 - 6 - ... + 39\).

9. Find the indicated sum for each geometric series.
 a) \(S_9 \) for \(7 + 14 + 28 + 56 + ... \)
 b) \(S_6 \) for \(2000 - 400 + 80 - ... \)

10. Find the sum of the geometric series \(7 - 21 + 63 + ... - 1701 \).
11. **Space shuttle** When Dr. Roberta Bondar flew on the space shuttle, it lifted off at about 10:00 and then orbited Earth once every 90 min. At what time of day did it complete its 9th orbit?

12. **Bacterial culture** The number of bacteria in a culture is doubling every 30 min. If there are 10 000 bacteria at 16:00, how many will there be at 20:00 on the same day?

Achievement Check

<table>
<thead>
<tr>
<th>Knowledge/Understanding</th>
<th>Thinking/Inquiry/Problem Solving</th>
<th>Communication</th>
<th>Application</th>
</tr>
</thead>
</table>

13. **a)** If a number is added to each term of a geometric sequence, is the resulting sequence still geometric? Is it arithmetic? Explain.

b) If a number is multiplied by each term of an arithmetic sequence, is the resulting sequence still arithmetic? Is it geometric? Explain.

c) If an arithmetic sequence is added to a geometric sequence, term by term, is the resulting sequence arithmetic or geometric? Explain.

Answer questions 14 and 15 only if you studied section 6.4.

14. **Write the first 4 terms determined by each recursion formula.**

 a) \(t_1 = 7; \ t_n = t_{n-1} - 3 \)

 b) \(t_1 = -2; \ t_n = t_{n-1} + n \)

 c) \(t_1 = 2000; \ t_n = -0.4t_{n-1} \)

 d) \(t_1 = 2; \ t_2 = 3; \ t_n = t_{n-1} - t_{n-2} \)

15. **Write an explicit formula for the sequence determined by each recursion formula.**

 a) \(t_1 = 2; \ t_n = 5t_{n-1} \)

 b) \(t_1 = -7; \ t_n = t_{n-1} + 8 \)