The CF-18 Hornet is a supersonic jet flown in Canada. It has a maximum speed of Mach 1.8. The speed of sound is Mach 1. When a plane like the Hornet breaks the sound barrier, it produces a shock wave in the shape of a cone. For a plane flying parallel to the ground, the shock wave, or sonic boom, intersects the ground in a branch of a hyperbola.

The standard form of the equation of a conic provides a convenient way to identify the conic and sketch the graph. The equation of a conic can also be written in the form
\[ax^2 + by^2 + 2gx + 2fy + c = 0. \]

For example, an equation in standard form for a hyperbola is
\[\frac{(x + 2)^2}{9} - \frac{(y - 1)^2}{4} = 1. \]

Multiply both sides by 36:
\[4(x + 2)^2 - 9(y - 1)^2 = 36. \]
Expand and simplify:
\[4(x^2 + 4x + 4) - 9(y^2 - 2y + 1) = 36, \]
\[4x^2 + 16x + 16 - 9y^2 + 18y - 9 = 36, \]
\[4x^2 - 9y^2 + 16x + 18y - 29 = 0. \]

In general, \(ax^2 + by^2 + 2gx + 2fy + c = 0 \) is a quadratic equation when \(a \) and \(b \) are not both equal to zero.

INVESTIGATE & INQUIRE

1. Copy and complete the table by expanding and simplifying each equation. Write each result in the form \(ax^2 + by^2 + 2gx + 2fy + c = 0 \).

<table>
<thead>
<tr>
<th>Standard Form</th>
<th>(ax^2 + by^2 + 2gx + 2fy + c = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{(x - 3)^2}{4} + \frac{(y + 2)^2}{25} = 1)</td>
<td></td>
</tr>
<tr>
<td>b) ((x - 3)^2 + (y - 1)^2 = 9)</td>
<td></td>
</tr>
<tr>
<td>c) (y + 3 = 2(x - 1)^2)</td>
<td></td>
</tr>
<tr>
<td>d) (\frac{(x - 1)^2}{9} - \frac{(y + 1)^2}{16} = 1)</td>
<td></td>
</tr>
</tbody>
</table>
2. Identify each equation in standard form in question 1 as the equation of a circle, ellipse, hyperbola, or parabola.

3. a) For the circle written in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$, what do you notice about the values of a and b?
 b) For a circle, if $f = 0$ and $g = 0$, what are the coordinates of the centre?

4. a) For the ellipse written in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$, what do you notice about the signs of a and b?
 b) For an ellipse, if $f = 0$ and $g = 0$, what are the coordinates of the centre?

5. a) For the parabola written in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$, what do you notice about the values of a and b?
 b) What is always true for the value of a or b for a parabola?

6. a) For the hyperbola written in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$, what do you notice about the signs of a and b?
 b) For a hyperbola, if $f = 0$ and $g = 0$, what are the coordinates of centre?

7. If you are given the equation of a conic in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$, how can you identify the type of conic, without rewriting the equation in standard form?

8. Without rewriting in standard form, identify each of the following conics.
 a) $3x^2 + 24x - y + 50 = 0$
 b) $16x^2 - y^2 - 32x - 10y - 25 = 0$
 c) $4x^2 + y^2 + 8x - 4y + 4 = 0$
 d) $x^2 + y^2 - 6x - 2y + 1 = 0$

The type of conic represented by an equation in the form $ax^2 + by^2 + 2gx + 2fy + c = 0$ can be identified using the signs and values of a and b.

- For a circle, $a = b$.
- For an ellipse, a and b have the same sign, and $a \neq b$.
- For a parabola, either $a = 0$ or $b = 0$.
- For a hyperbola, a and b have opposite signs.

Example 1 Sketching the Graph of a Conic

a) Identify the type of conic whose equation is $4x^2 + 9y^2 - 16x + 18y - 11 = 0$.
b) Write the equation in standard form.
c) Determine the key features and sketch the graph.
Solution

a) Since $a = 4$ and $b = 9$, a and b have the same sign, with $a \neq b$. The conic is an ellipse.

b) To write the equation in standard form, complete the square for both variables.

\[
4x^2 + 9y^2 - 16x + 18y - 11 = 0
\]

Add 11 to both sides:

\[
4x^2 + 9y^2 - 16x + 18y = 11
\]

Group the x and y terms:

\[
4(x^2 - 16x) + 9(y^2 + 18y) = 11
\]

Remove common factors:

\[
4(x^2 - 16x + 4 - 4) + 9(y^2 + 18y + 9 - 9) = 11
\]

Complete the square:

\[
4((x - 2)^2 - 16 + 4) + 9((y + 1)^2 - 9 + 9) = 11
\]

\[
4(x - 2)^2 + 9(y + 1)^2 = 36
\]

Divide both sides by 36:

\[
\frac{(x - 2)^2}{9} + \frac{(y + 1)^2}{4} = 1
\]

The equation in standard form is

\[
\frac{(x - 2)^2}{3^2} + \frac{(y + 1)^2}{2^2} = 1
\]

The ellipse is centred at (h, k), or $(2, -1)$, and the major axis is parallel to the x-axis.

$a^2 = 9$, so $a = 3$

$b^2 = 4$, so $b = 2$

The major axis, which is parallel to the x-axis, has a length of $2a$, or 6.

The minor axis, which is parallel to the y-axis, has a length of $2b$, or 4.

The vertices are $V_1(h - a, k)$ and $V_2(h + a, k)$.

Substitute the values of h, k, and a.

The vertices are $V_1(2 - 3, -1)$ and $V_2(2 + 3, -1)$, or $V_1(-1, -1)$ and $V_2(5, -1)$.

The co-vertices are $(h, k - b)$ and $(h, k + b)$.

Substitute the values of h, k, and b.

The co-vertices are $(2, -1 - 2)$ and $(2, -1 + 2)$, or $(2, -3)$ and $(2, 1)$.
The foci are \(F_1(h - c, k) \) and \(F_2(h + c, k) \).

To find \(c \), we use \(a^2 = b^2 + c^2 \), with \(a = 3 \) and \(b = 2 \).

\[
a^2 = b^2 + c^2 = 3^2 = 2^2 + c^2 = 9 = 4 + c^2 = 5 = c
\]

The coordinates of the foci are \((2 - \sqrt{5}, -1)\) and \((2 + \sqrt{5}, -1)\), or approximately \((-0.24, -1)\) and \((4.24, -1)\).

Plot the vertices and co-vertices.

Draw a smooth curve through the points.

Label the foci and the graph.

Example 2 Sketching the Graph of a Conic

a) Identify the type of conic whose equation is \(y^2 + 8x + 2y - 15 = 0 \).

b) Write the equation in standard form.

c) Determine the key features and sketch the graph.

Solution

a) Since \(a = 0 \) and \(b \neq 0 \), the conic is a parabola.

b) To write the equation in standard form, complete the square for the \(y \)-variable.

\[
y^2 + 8x + 2y - 15 = 0
\]

Add 15 to both sides:

\[
y^2 + 8x + 2y = 15
\]

Group the \(y \) terms:

\[
y^2 + 2y + 8x = 15
\]

Complete the square:

\[
y^2 + 2y + 1 - 1 + 8x = 15
\]

\[
(y + 1)^2 - 1 + 8x = 15
\]

\[
(y + 1)^2 + 8x = 16
\]

Rearrange:

\[
8x - 16 = -(y + 1)^2
\]

Remove a common factor:

\[
8(x - 2) = -(y + 1)^2
\]

Divide both sides by 8:

\[
x - 2 = -\frac{1}{8}(y + 1)^2
\]

The equation in standard form is \(x - 2 = -\frac{1}{8}(y + 1)^2 \).
c) The equation is in the form \(x - h = \frac{1}{4p}(y - k)^2 \).
The vertex is \(V(h, k) \).
\(h = 2, k = -1 \), so the vertex is \(V(2, -1) \).

Find the value of \(p \).
From the equation, \(\frac{1}{4p} = \frac{-1}{8} \)
\[4p = 4(-2) \]
\[p = -2 \]

\(p < 0 \), so the parabola opens left.
The focus \(F(h + p, k) \) is \((2 + (-2), -1) \) or \((0, -1) \).
The directrix is \(x = h - p \)
\[x = 2 - (-2) \]
\[x = 4 \]

The axis of symmetry is \(y = k \) or \(y = -1 \).
Sketch and label the graph.

Example 3 Shock Wave

A shock wave from an aircraft that breaks the sound barrier intersects the ground in a curve with the equation \(x^2 - 4y^2 + 4x + 24y - 36 = 0 \).

a) Identify the type of conic.
b) Write the equation in standard form.
c) Determine the key features and sketch the graph.

Solution

a) Since \(a \) and \(b \) have opposite signs, the conic is a hyperbola.
b) To write the equation in standard form, complete the square for both variables.

\[x^2 - 4y^2 + 4x + 24y - 36 = 0 \]

Add 36 to both sides:

\[x^2 - 4y^2 + 4x + 24y = 36 \]

Group the x and y terms:

\[x^2 + 4x - 4y^2 + 24y = 36 \]

Remove a common factor:

\[x^2 + 4x - 4(y^2 - 6y) = 36 \]

Complete the square:

\[x^2 + 4x + 4 - 4(y^2 - 6y + 9) + 36 = 36 \]

\[(x + 2)^2 - 4(y - 3)^2 = 4 \]

Divide both sides by 4:

\[\frac{(x + 2)^2}{4} - \frac{(y - 3)^2}{1} = 1 \]

The equation in standard form is \(\frac{(x + 2)^2}{4} - (y - 3)^2 = 1 \).

c) The equation is in the form \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \).

The centre is \(C(h, k) = (-2, 3) \).

The transverse axis is parallel to the x-axis.

\[a^2 = 4, \text{ so } a = 2 \]

\[b^2 = 1, \text{ so } b = 1 \]

The vertices are \(V_1(h - a, k) \) and \(V_2(h + a, k) \).

Substitute the values for \(h, k, \) and \(a \).

\(V_1(-2 - 2, 3) \) and \(V_2(-2 + 2, 3) \) or \(V_1(-4, 3) \) and \(V_2(0, 3) \).

The co-vertices are \((h, k - b) \) and \((h, k + b) \).

Substitute the values for \(h, k, \) and \(b \).

The coordinates of the co-vertices are \((-2, 3 - 1)\) and \((-2, 3 + 1)\) or \((-2, 2)\) and \((-2, 4)\).

The length of the transverse axis is

\[2a = 2(2) \]

\[= 4 \]

The length of the conjugate axis is

\[2b = 2(1) \]

\[= 2 \]
The coordinates of the foci are \(F_1(h - c, k) \) and \(F_2(h + c, k) \).

To find \(c \), use \(c^2 = a^2 + b^2 \), with \(a = 2 \) and \(b = 1 \).

\[
c^2 = 2^2 + 1^2 = 5
\]

\[c = \sqrt{5}\]

The coordinates of the foci are \((-2 - \sqrt{5}, 3)\) and \((-2 + \sqrt{5}, 3)\), or approximately \((-4.24, 3)\) and \((0.24, 3)\).

Sketch and label the graph.

Key Concepts

- The equation of a conic can be written in the form \(ax^2 + by^2 + 2gx + 2fy + c = 0 \), where \(a \) and \(b \) are not both equal to zero.
- The type of conic represented by an equation in the form \(ax^2 + by^2 + 2gx + 2fy + c = 0 \) can be identified using the signs and values of \(a \) and \(b \).
 * For a circle, \(a = b \).
 * For an ellipse, \(a \) and \(b \) have the same sign, and \(a \neq b \).
 * For a parabola, \(a = 0 \) or \(b = 0 \).
 * For a hyperbola, \(a \) and \(b \) have opposite signs.
- To graph a conic section whose equation is in the form \(ax^2 + by^2 + 2gx + 2fy + c = 0 \), first use the method of completing the square to write the equation in standard form.

Communicate Your Understanding

1. Identify each of the following conics.
 a) \(x^2 + 4y^2 - 16 = 0 \)
 b) \(2x^2 - 2x - 6y - 3 = 0 \)
 c) \(x^2 + y^2 - 4x + 8y - 44 = 0 \)
 d) \(x^2 - 9y^2 - 14x + 36y + 4 = 0 \)
2. Describe how you would write an equation in standard form for the conic defined by \(4x^2 + 25y^2 - 16x + 50y - 9 = 0 \).
Practise

A

1. Identify the type of conic by inspection.
 a) \(x^2 - 2y^2 - 6x + 4y - 2 = 0\)
 b) \(2x^2 + y^2 - 6x - 4y - 3 = 0\)
 c) \(x^2 + y^2 - 5x + 4y + 3 = 0\)
 d) \(3y^2 + 6x - 6y - 9 = 0\)
 e) \(2x^2 - 3y^2 - 6x - 1 = 0\)
 f) \(3x^2 - 4y^2 + 3x + 6y - 1 = 0\)
 g) \(2x^2 - 6x + 9y = 0\)

2. For each of the following equations,
 i) identify the type of conic
 ii) write the equation in standard form
 iii) determine the key features and sketch the graph
 a) \(x^2 + y^2 - 2x - 6y - 15 = 0\)
 b) \(4x^2 + y^2 + 24x - 4y - 24 = 0\)
 c) \(x^2 + 6x - 8y + 25 = 0\)
 d) \(y^2 - 4y - 8x + 12 = 0\)
 e) \(x^2 + 16y^2 + 8x - 96y + 144 = 0\)
 f) \(x^2 + y^2 + 4x - 6y - 23 = 0\)
 g) \(2x^2 - 2y^2 + 4x - 4y + 1 = 0\)
 h) \(y^2 - 4y + 4x + 8 = 0\)
 i) \(x^2 - 2y^2 - 6x - 4y - 2 = 0\)

3. For each conic, write an equation in standard form and in the form
 \(ax^2 + by^2 + 2gx + 2fy + c = 0\).
 a) [Graph]

672 MHR • Chapter 8
Apply, Solve, Communicate

4. Inquiry/Problem Solving a) For the equation $x^2 + by^2 - 4 = 0$, determine the value(s) of b that result in an equation of
 i) a circle ii) a parabola
 iii) an ellipse iv) a hyperbola
b) Give an example to illustrate each answer in part a).

5. a) For the equation $ax^2 - y^2 + 9 = 0$, determine the value(s) of a that will result in an equation of
 i) a circle ii) a parabola
 iii) an ellipse iv) a hyperbola
b) Give an example to illustrate each answer in part a).

6. Inquiry/Problem Solving The three squares in the diagram are centred at the same point. The red border has the same area as the smallest square.
 a) How are p and q related?
 b) Graph the relation.

7. Application When a plane breaks the sound barrier, a shock wave in the shape of a cone is produced. If the plane is flying parallel to the ground, the shock wave intersects the ground in a branch of a hyperbola.
 a) Use your knowledge of the intersection of a plane and a cone to explain why the intersection is a branch of a hyperbola.
 b) If the intersection of a shock wave with the ground can be modelled by the equation $x^2 + 25y^2 - 8x + 100y + 91 = 0$, describe how the plane is flying.
 c) Is it possible for the intersection of a shock wave with the ground to be modelled by the equation $4x^2 + 4y^2 + 36y + 5 = 0$? Explain.
8. **Degenerate conics** The rules for identifying a type of conic from its equation do not always apply. For example, in \(x^2 + y^2 + 2x - 4y + 5 = 0 \), \(a = b \), so the equation appears to model a circle.

Completing the square gives

\[
\begin{aligned}
x^2 + y^2 + 2x - 4y + 5 &= 0 \\
x^2 + 2x + 1 - 1 + y^2 - 4y + 4 - 4 + 5 &= 0 \\
(x + 1)^2 + (y - 2)^2 &= 0
\end{aligned}
\]

The ordered pair \((-1, 2)\) satisfies the equation. The solution is \((-1, 2)\).

Therefore, the graph of \(x^2 + y^2 + 2x - 4y + 5 = 0 \) is a point, not a circle. Because the equation appears to model a circle, the graph is referred to as a degenerate circle.

Changing the equation to \(x^2 + y^2 + 2x - 4y + 6 = 0 \) and completing the square gives \((x + 1)^2 + (y - 2)^2 = -1\).

This equation has no solution, since the sum of two squares cannot be negative. So, the equation \(x^2 + y^2 + 2x - 4y + 6 = 0 \) is degenerate.

i) Identify the type of conic that each of the following equations appears to model.

ii) Verify that each equation is degenerate.

iii) Graph the equation, if possible.

a) \(4x^2 + y^2 - 8x + 2y + 6 = 0 \)

b) \(x^2 + y^2 - 2x - 6y + 10 = 0 \)

c) \(3x^2 + 4y^2 - 6x - 24y + 39 = 0 \)

d) \(9x^2 - y^2 + 18x + 6y = 0 \)

LOGIC Power

What are the four moves that X should not play, if X wants to stop O from winning?