CHALLENGE PROBLEMS

1. **Equation** Write an equation in the form \(y = ax^2 + bc + c \) for the quadratic function whose graph passes through \((8, 0), (0, 8)\) and \((-2, 0)\).

2. **Roots** Find the roots of \(x^2 + \left(\frac{k^2 + 1}{k}\right)x + 1 = 0 \).

3. **Evaluating** If \(\left(\frac{2}{x} - x\right)^2 = 0 \), evaluate \(x^6 \).

4. **Real roots** Find all values of \(k \) that ensure that the roots are real for \(x - k(x - 1)(x - 2) = 0 \).

5. **Factors** Find all possible values of \(k \) so that \(3x^2 + kx + 5 \) can be factored as the product of two binomial factors with integer coefficients.

6. **Positive integers** Show that there are nine pairs of positive integers \((m, n)\) such that \(m^2 + 3mn + 2n^2 - 10m - 20n = 0 \).

7. **Measurement** The difference in the length of the hypotenuse of \(\triangle ABC \) and the length of the hypotenuse of \(\triangle XYZ \) is 3. Hypotenuse \(AB = x \), hypotenuse \(XY = \sqrt{x - 1} \) and \(AB > XY \). Determine the length of each hypotenuse.