3 U(HWK 2.5)

4. For each quadratic relation,

- i. express the relation in factored form
- ii. find the coordinates of the vertex
- iii. express the relation in vertex form
- iv. skerch the granh

(a)
$$y = x^2 - 6x + 5$$

(b)
$$y = -2x^2 + 12x - 16$$

(c)
$$y = \frac{1}{2}x^2 + x - 4$$

(d)
$$y = 4x^2 - 12x + 5$$

(e)
$$y = -3x^2 - 12x$$

(f)
$$y = 2x^2 - 4x - 30$$

5. For each quadratic relation,

- i. use partial factoring to find two points that are equidistant from the axis of symmetry
- ii. find the coordinates of the vertex
- iii. express the relation in vertex form
- iv. sketch the graph

(a)
$$y = x^2 - 6x + 5$$

(c)
$$y = -2x^2 + 12x - 11$$

(e)
$$y = -\frac{1}{2}x^2 + 2x + 3$$

(b)
$$y = x^2 - 4x - 11$$

$$(d)$$
 $y = -x^2 - 6x - 13$

(f)
$$y = 2x^2 - 10x + 11$$

9. For each quadratic relation,

- i. complete the square to express the relation in vertex form
- ii. graph the relation

(a)
$$y = x^2 - 4x + 7$$

(c)
$$y = \frac{1}{2}x^2 - 2x + 5$$

(e)
$$y = -3x^2 - 18x + 13$$

(b)
$$y = x^2 + 8x + 6$$

(d)
$$y = -x^2 + 6x - 11$$

(f)
$$y = 2x^2 + 20x + 43$$

(a)
$$(0, -13), (-6, -13), (-3, -4),$$

(b) $(0, 3), (4, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3$

$$\phi - \zeta(z - x) = \zeta \cdot (b - \zeta) \cdot (1 - x)(2 - x) = \zeta \cdot (b - \zeta) \cdot (1 - x)(2 - x) = \zeta \cdot (b - \zeta) \cdot (1 - x)(2 - x) = \zeta \cdot (b - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)(2 - x)(2 - x) = \zeta \cdot (a - x)(2 - x)$$

THREE FORMS TO GRAPH A QUADRATIC FUNCTION $y = ax^2 + bx + c$

Vertex Form

$$y = a(x - h)^2 + k$$

where the vertex is at (h,k) where a is the vertical stretch/compression where +a indicates parabola opens up where -a indicates parabola opens down

Real Life Scenario - Find the maximum height of the ball.

- 1. Complete the square if necessary, to place equation into vertex form.
- 2. Plot vertex
- Use step pattern to plot additional points, moving from the vertex initially. (Remember: Go over 1 and up/down by...)

Factored Form

$$y = a(x - s)(x - t)$$

where the zeros are (s,0) and (t,0) where a is the vertical stretch/compression where +a indicates parabola opens up where -a indicates parabola opens down

1. Factor and set equation equal to zero.

2. Solve to find roots s and t. These are the x-intercepts.

3. Find the axis of symmetry (halfway between s and t)

4. Substitute the value of the axis of symmetry for x in the initial equation to find the coordinates of the vertex.

5. Plot zeroes and vertex, connect and label.

Real Life Scenario - When did the ball hit the ground?

Partial Factored Form

$$y = ax(x - s) + t$$

where t is the y co-ordinate of the two points you are finding at the same height

where the two points at the same height are (0,t) and (s,t)

where a is the vertical stretch/compression where +a indicates parabola opens up where -a indicates parabola opens down

- 1. Factor the first two terms by removing the common factor of ax from the standard form of a quadratic equation.
- 2. Substitute the value of 0 for x to find the first point (0,t)
- 3. Substitute the value of s for x to find the second point (s,t)
- 4. Identify the axis of symmetry (halfway between 0 and s)
- 5. Substitute the value of the axis of symmetry for x in the initial equation to find the coordinates of the vertex.
- 6. Plot the two points and the vertex, connect and label.

Real Life Scenario – What is the distance of the ball from the player if the height of the ball is 2m off the ground?