Chapter 1 Polynomial Functions

- **1. a)** What is meant by even symmetry? odd symmetry?
 - **b)** Describe how to determine whether a function has even or odd symmetry.
- **2.** Describe two key differences between polynomial functions and non-polynomial functions.
- **3.** Compare the end behaviour of the following functions. Explain any differences.

$$f(x) = -3x^2$$

$$g(x) = 5x^4$$

$$h(x) = 0.5x^3$$

4. Determine the degree of the polynomial function modelling the following data.

X	у
-2	17
-1	-3
0	-3
1	-1
, 2	33
3	177

- **5.** Determine an equation and sketch a graph of the function with a base function of $f(x) = x^4$ that has been transformed by -2f(x-3) + 1.
- **6.** Sketch the functions $f(x) = x^3$ and $g(x) = -\frac{1}{2}(x-1)(x+2)^2$ on the same set of axes. Label the *x* and *y*-intercepts. State the domain and range of each function.
- 7. Consider the function $f(x) = 2x^4 + 5x^3 x^2 3x + 1$.
 - a) Determine the average slope between the points where x = 1 and x = 3.
 - b) Determine the instantaneous slope at each of these points.
 - c) Compare the three slopes and describe how the graph is changing.

8. Determine an equation for each function.

9. Given the function $f(x) = -2x^2 + 1$, describe the slope and the change in slope for the appropriate intervals.

Chapter 2 Polynomial Equations and Inequalities

10. Perform each division. Write the statement that can be used to check each division. State the restrictions.

a)
$$(4x^3 + 6x^2 - 4x + 2) \div (2x - 1)$$

b)
$$(2x^3 - 4x + 8) \div (x - 2)$$

c)
$$(x^3 - 3x^2 + 5x - 4) \div (x + 2)$$

d)
$$(5x^4 - 3x^3 + 2x^2 + 4x - 6) \div (x + 1)$$

11. Factor, if possible.

a)
$$x^3 + 4x^2 + x - 6$$

b)
$$2x^3 + x^2 - 16x - 15$$

c)
$$x^3 - 7x^2 + 11x - 2$$

d)
$$x^4 + x^2 + 1$$

- 12. Use the remainder theorem to determine the remainder for each.
 - a) $4x^3 7x^2 + 3x + 5$ divided by x 5
 - **b)** $6x^4 + 7x^2 2x 4$ divided by 3x + 2
- 13. Use the factor theorem to determine whether the second polynomial is a factor of the first.
 - a) $3x^5 4x^3 4x^2 + 15$; x + 5
 - **b)** $2x^3 4x^2 + 6x + 5$; x + 1
- 14. Solve.
 - a) $x^4 81 = 0$
 - **b)** $x^3 x^2 10x 8 = 0$
 - c) $8x^3 + 27 = 0$
 - d) $12x^4 7x^2 6x + 16x^3 = 0$
- 15. A family of quartic functions has zeros -3, -1, and 1 (order 2).
 - a) Write an equation for the family. State two other members of the family.
 - **b)** Determine an equation for the member of the family that passes through the point (-2, -6).
 - c) Sketch the function you found in part b).
 - d) Determine the intervals where the function in part b) is positive.
- 16. Solve each inequality, showing the appropriate steps. Illustrate your solution on a number line.
 - a) (x-4)(x+3) > 0
 - **b)** $2x^2 + x 6 < 0$
 - c) $x^3 2x^2 13x \le 10$

Chapter 3 Rational Functions

- 17. Determine equations for the vertical and horizontal asymptotes of each function.
 - a) $f(x) = \frac{1}{x-2}$
 - **b)** $g(x) = \frac{x+5}{x+3}$
 - c) $h(x) = \frac{2}{x^2 9}$
 - **d)** $k(x) = \frac{-1}{x^2 + 4}$

- 18. For each function,
 - i) determine equations for the asymptotes
 - ii) determine the intercepts
 - iii) sketch a graph
 - iv) describe the increasing intervals and the decreasing intervals
 - v) state the domain and the range

 - **a)** $f(x) = \frac{1}{x+4}$ **b)** $g(x) = \frac{-4}{x-2}$
 - c) $h(x) = \frac{x-1}{x+3}$ d) $i(x) = \frac{2x+3}{5x+1}$

 - e) $j(x) = \frac{10}{x^2}$ f) $k(x) = \frac{3}{x^2 6x 27}$
- 19. Analyse the slope and the change in slope for the appropriate intervals of the function $f(x) = \frac{1}{x^2 - 4x - 21}$. Sketch a graph of the function.
- 20. Solve algebraically.
 - a) $\frac{5}{x-3}=4$
 - **b)** $\frac{2}{x-1} = \frac{4}{x+5}$
 - c) $\frac{6}{x^2 + 4x + 7} = 2$
- 21. Solve each inequality. Illustrate the solution on a number line.
 - a) $\frac{3}{x-4} < 5$
 - **b)** $\frac{x^2 8x + 15}{x^2 + 5x + 4} \ge 0$
- 22. A lab technician pours a quantity of a chemical into a beaker of water. The rate, R, in grams per second, at which the chemical dissolves can be modelled by the function $R(t) = \frac{2t}{t^2 + 4t}$, where *t* is the time, in seconds.
 - a) By hand or using technology, sketch a graph of this relation.
 - b) What is the equation of the horizontal asymptote? What is its significance?
 - c) State an appropriate domain for this relation if a rate of 0.05 g/s or less is considered to be inconsequential.

Chapter 4 Trigonometry

- 23. Determine the exact radian measure for each angle.
 - a) 135°
- **b)** -60°
- 24. Determine the exact degree measure for each angle.
- 25. A sector angle of a circle with radius 9 cm measures $\frac{5\pi}{12}$. What is the perimeter of the sector?
- 26. Determine the exact value of each trigonometric ratio.

- a) $\cos \frac{5\pi}{6}$ b) $\sin \frac{3\pi}{2}$ c) $\tan \frac{4\pi}{3}$ d) $\cot \frac{11\pi}{4}$
- 27. Use the sum or difference formulas to find the exact value of each.
 - a) $\cos \frac{\pi}{12}$
- **b)** $\sin \frac{11\pi}{12}$
- 28. Prove each identity.
 - $\mathbf{a}) \sec x \tan x = \frac{1 \sin x}{\cos x}$
 - **b)** $(\csc x \cot x)^2 = \frac{1 \cos x}{1 + \cos x}$
 - c) $\sin 2A = \frac{2 \tan A}{\sec^2 A}$
 - **d)** $\cos(x + y)\cos(x y) = \cos^2 x + \cos^2 y 1$
- **29.** Given $\sin x = \frac{1}{5}$ and $\sin y = \frac{5}{6}$, where x and y are acute angles, determine the exact value of $\sin(x + y)$.
- **30.** Given that $\cos \frac{5\pi}{8} = -\sin y$, first express $\frac{5\pi}{8}$ as a sum of $\frac{\pi}{2}$ and an angle, and then apply a trigonometric identity to determine the measure of angle y.

Chapter 5 Trigonometric Functions

- 31. a) State the period, amplitude, phase shift, and vertical translation for the function $f(x) = 3\sin\left[2\left(x - \frac{\pi}{2}\right)\right] + 4.$
 - b) State the domain and the range of f(x).

- 32. Sketch a graph of each function for one period. Label the x-intercepts and any asymptotes.
 - a) $f(x) = \sin(x \pi) 1$
 - $\mathbf{b)} \ f(x) = -3\cos\left[4\left(x + \frac{\pi}{2}\right)\right]$
 - c) $f(x) = \sec\left(x \frac{\pi}{2}\right)$
- **33.** Solve for $\theta \in [0, 2\pi]$.
 - a) $2\sin\theta = -\sqrt{3}$
 - **b)** $2\sin\theta\cos\theta \cos\theta = 0$
 - c) $\csc^2 \theta = 2 + \csc \theta$
- 34. The blade of a sabre saw moves up and down. Its vertical displacement in the first cycle is shown in the table.

Time (s)	Displacement (cm)
0	0
0.005	0.64
0.01	1.08
0.015	1.19
0.02	0.92
0.025	0.37
0.03	-0.30
0.035	-0.87
0.04	-1.18
0.045	-1.12
0.05	-0.71
0.055	-0.08
0.06	0.58
0.065	1.05
0.07	1.19

- a) Make a scatter plot of the data.
- b) Write a sine function to model the data.
- c) Graph the sine function on the same set of axes as in part a).
- d) Estimate the rate of change when the displacement is 0 cm, to one decimal place.

Chapter 6 Exponential and Logarithmic **Functions**

- 35. Express in logarithmic form.
 - **a)** $7^2 = 49$ **b)** $a^b = c$
- - c) $8^3 = 512$ d) $11^x = y$

- **36. a)** Sketch graphs of $f(x) = \log x$ and $g(x) = \frac{1}{2}\log(x+1)$ on the same set of axes. Label the intercepts and any asymptotes.
 - b) State the domain and the range of each function.
- 37. Express in exponential form.
 - a) $\log_{3} 6561 = 8$
- **b)** $\log_{1} 75 = b$
- c) $\log_{2} 2401 = 4$
- **d)** $\log_{a} 19 = b$
- 38. Evaluate.
 - a) $\log_{2} 256$
- **b)** $\log_{15} 15$
- c) $\log_6 \sqrt{6}$
- d) log₃243
- **e)** $\log_{12} 12$
- f) $\log_{11} \frac{1}{\sqrt{121}}$
- **39.** Solve for x.
 - a) $\log_{2} x = 4$
- **b)** $\log_{10} 125 = 3$
- c) $\log_{7} x = 5$
- d) $\log_{2} 729 = 6$
- e) $\log_{\frac{1}{2}} 128 = x$ f) $\log_{\frac{1}{4}} 64 = x$
- 40. A culture begins with 100 000 bacteria and grows to 125 000 bacteria after 20 min. What is the doubling period, to the nearest minute?
- **41.** The pH scale is defined as pH = $-\log[H^+]$, where $[H^+]$ is the concentration of hydronium ions, in moles per litre.
 - a) Eggs have a pH of 7.8. Are eggs acidic or alkaline? What is the concentration of hydronium ions in eggs?
 - b) A weak vinegar solution has a hydronium ion concentration of 7.9×10^{-4} mol/L. What is the pH of the solution?

Chapter 7 Tools and Strategies for Solving Exponential and Logarithmic Equations

- **42.** Solve each equation. Check for extraneous roots.
 - a) $3^{2x} + 3^x 21 = 0$
 - **b)** $4^x + 15(4)^{-x} = 8$
- 43. Use the laws of logarithms to evaluate.
 - a) $\log_8 4 + \log_8 128$ b) $\log_7 7\sqrt{7}$
 - c) $\log_{5} 10 \log_{5} 250$ d) $\log_{6} \sqrt[3]{6}$

- 44. Solve, correct to four decimal places.
 - a) $2^x = 13$
- **b)** $5^{2x+1} = 97$
- c) $3^x = 19$
- **d)** $4^{3x+2} = 18$
- 45. Solve. Check for extraneous roots.
 - a) $\log_5(x+2) + \log_5(2x-1) = 2$
 - **b)** $\log_4(x+3) + \log_4(x+4) = \frac{1}{2}$
- 46. Determine the point(s) of intersection of the functions $f(x) = \log x$ and $g(x) = \frac{1}{2} \log(x + 1)$.
- 47. Bismuth is used in making chemical alloys, medicine, and transistors. A 10-mg sample of bismuth-214 decays to 9 mg in 3 min.
 - a) Determine the half-life of bismuth-214.
 - b) How much bismuth-214 remains after 10 min?
 - c) Graph the amount of bismuth-214 remaining as a function of time.
 - d) Describe how the graph would change if the half-life were shorter. Give reasons for your answer.
- **48.** The volume of computer parts in landfill sites is growing exponentially. In 2001, a particular landfill site had 124 000 m³ of computer parts, and in 2007, it had 347 000 m³ of parts.
 - a) What is the doubling time of the volume of computer parts in this landfill site?
 - b) What is the expected volume of computer parts in this landfill site in 2020?
- **49.** The value of a particular model of car depreciates by 18% per year. This model of car sells for \$35 000.
 - a) Write an equation to relate the value of the car to the time, in years.
 - **b)** Determine the value of the car after 5 years.
 - c) How long will it take for the car to depreciate to half its original value?
 - d) Sketch a graph of this relation.
 - e) Describe how the shape of the graph would change if the rate of depreciation changed to 25%.

Chapter 8 Combining Functions

- **50.** Consider $f(x) = 2^{-\frac{x}{\pi}}$ and $g(x) = 2\cos(4x)$ for $x \in [0, 4\pi]$. Sketch a graph of each function.
 - a) y = f(x) + g(x)
- **b)** y = f(x) g(x)
- c) y = f(x)g(x) d) $y = \frac{f(x)}{\sigma(x)}$
- **51.** Given $f(x) = 2x^2 + 3x 5$ and g(x) = x + 3, determine each of the following.
 - a) f(g(x))
- **b)** g(f(x))
- c) f(g(-3))
- **d)** g(f(7))
- **52.** If $f(x) = \frac{1}{x}$ and g(x) = 4 x, determine each of the following, if it exists.
 - **a)** f(g(3))
- **b)** f(g(0))
- c) f(g(4))
- **d)** g(f(4))
- **53.** Find expressions for f(g(x)) and g(f(x)), and state their domains.
 - a) $f(x) = \sqrt{x}, g(x) = x + 1$
 - **b)** $f(x) = \sin x, g(x) = x^2$
 - c) $f(x) = |x|, g(x) = x^2 6$
 - **d)** $f(x) = 2^{x+1}$, g(x) = 3x + 2
 - e) $f(x) = (x + 3)^2$, $g(x) = \sqrt{x 3}$
 - f) $f(x) = \log x$, $g(x) = 3^{x+1}$
- **54.** Consider $f(x) = -\frac{2}{x}$ and $g(x) = \sqrt{x}$.
 - a) Determine f(g(x)).
 - **b)** State the domain of f(g(x)).
 - c) Determine whether f(g(x)) is even, odd, or neither.
- **55.** Verify, algebraically, that $f(f^{-1}(x)) = x$ for each of the following.
 - a) $f(x) = x^2 4$
 - **b)** $f(x) = \sin x$
 - c) f(x) = 3x
 - **d)** $f(x) = \frac{1}{x-2}$

- **56.** Solve. Illustrate each inequality graphically.
 - a) $\sin x < 0.1x^2 1$
 - **b)** $x + 2 \ge 2^x$
- 57. A Ferris wheel rotates such that the angle of rotation, θ , is defined by $\theta = \frac{\pi t}{15}$, where t is the time, in seconds. A rider's height, h, in metres, above the ground can be modelled by the function $h(\theta) = 20 \sin \theta + 22$.
 - a) Write an equation for the rider's height in terms of time.
 - b) Sketch graphs of the three functions, on separate sets of axes, one above the other.
 - c) Compare the periods of the graphs of $h(\theta)$ and h(t).
- 58. An office chair manufacturer models its weekly production since 2001 by the function N(t) = 100 + 25t, where t is the time, in years, since 2001, and N is the number of chairs. The size of the manufacturer's workforce can be modelled by the function $W(N) = 3\sqrt{N}$.
 - a) Write the size of the workforce as a function of time.
 - b) State the domain and range of the function in part a) that is relevant to this problem. Sketch its graph.
- 59. An environmental scientist measures the pollutant in a lake. The concentration, C(P), in parts per million (ppm), of pollutant can be modelled as a function of the population, P, of the lakeside city, by C(P) = 1.28P + 53.12. The city's population, in ten thousands, can be modelled by the function $P(t) = 12.5 \times 2^{\frac{t}{20}}$, where t is the time, in years.
 - a) Determine an equation for the concentration of pollutant as a function of time.
 - b) Sketch a graph of this function.
 - c) How long will it take for the concentration to reach 100 ppm?

d)
$$y = \frac{2^x + 2}{x^2 - 1}$$
; $\{x \in \mathbb{R}, x \neq -1, x \neq 1\}$,

$$\{y \in \mathbb{R}, y \le -2.96, y > 0\}$$

17. a) i)
$$C(n) = 35 + n$$
, $0 \le n \le 200$

ii)
$$R(n) = 2.5n$$
, $0 \le n \le 200$ b) Window variables: $x \in [0, 200]$, Xscl $10, y \in [0, 500]$, Yscl 50

c) (23.33, 58.33); Kathy makes a profit if she sells 24 or more cups of apple cider. Kathy loses money if she sells 23 or fewer cups of apple cider.

d)
$$P(n) = 1.5n - 35$$

e) \$265

18. a) linear; neither

b) periodic; even

e)
$$\{x \in \mathbb{R}\}, \{y \in \mathbb{R}\}$$

19. a)
$$y = \frac{\sqrt{1 - 9x^2}}{x}$$
; $\left\{ x \in \mathbb{R}, -\frac{1}{3} \le x < 0, 0 < x \le \frac{1}{3} \right\}$,

$$\{y \in \mathbb{R}\}\$$
b $)\ y = \frac{1}{x-9}; \{x \in \mathbb{R}, x > 9\}, \{y \in \mathbb{R}, y > 0\}$

20. a) Window variables:
$$x \in [-20, 20]$$
, Xscl 2, $y \in [-200, 100]$, Yscl 20

b)
$$[-5, -0.65)$$
 or $(7.65, \infty)$

Course Review, pages 479–483

1. a) An even function is symmetric with respect to the y-axis. An odd function is symmetric with respect to the origin.

b) Substitute -x for x in f(x). If f(-x) = f(x), the function is even. If f(-x) = -f(x), the function is odd.

2. Answers may vary. Sample answer: A polynomial function has the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. For a polynomial function of degree n, where n is a positive integer, the nth differences are equal (or constant).

3. f(x) extends from quadrant 3 to quadrant 4; even exponent, negative coefficient

g(x) extends from quadrant 2 to quadrant 1; even exponent, positive coefficient

 $\hat{b}(x)$ extends from quadrant 3 to quadrant 1; odd exponent, positive coefficient

5.
$$y = -2(x-3)^4 + 1$$

6. f(x): x-intercept 0, y-intercept 0, $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}\}$ g(x): x-intercepts -2 and 1, y-intercept 2, $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}\}$ Window variables: $x \in [-20, 20]$, Xscl 2, $y \in [-200, 100]$, Yscl 20

7. a) 138 **b)** 18; 342 **c)** The graph is increasing for 1 < x < 3.

8. a) y = (x+3)(x+1)(x-2)(x-5) b) $y = -(x+5)(x-1)^2$

9. For x < 0, the slope is positive and decreasing. For x > 0, the slope is negative and decreasing.

the slope is negative and decreasing.
10. a)
$$\frac{4x^3 + 6x^2 - 4x + 2}{2x - 1} = 2x^2 + 4x + \frac{2}{2x - 1}$$
, $x \neq \frac{1}{2}$

$$x \neq \frac{1}{2}$$

b)
$$\frac{2x^3 - 4x + 8}{x - 2} = 2x^2 + 4x + 4 + \frac{16}{x - 2}, x \neq 2$$

c)
$$\frac{x^3 - 3x^2 + 5x - 4}{x + 2} = x^2 - 5x + 15 + \frac{-34}{x + 2}, x \neq -2$$

d)
$$\frac{5x^4 - 3x^3 + 2x^2 + 4x - 6}{x + 1} = 5x^3 - 8x^2 + 10x - 6, x \neq -1$$

11. a)
$$(x-1)(x+2)(x+3)$$
 b) $(x-3)(x+1)(2x+5)$ c) $(x-2)(x^2-5x+1)$ d) $(x^2+x+1)(x^2-x+1)$

12. a) 345 b)
$$\frac{44}{27}$$

13. a) No. b) No.

14. a)
$$-3$$
, 3 b) -2 , -1 , 4 c) $-\frac{3}{2}$ d) $-\frac{3}{2}$, $-\frac{1}{2}$, 0, $\frac{2}{3}$

15. a) Answers may vary. Sample answer:

15. a) Answers may vary, sample answer:

$$y = k(x + 3)(x + 1)(x - 1)^2$$
; $y = 2(x + 3)(x + 1)(x - 1)^2$,
 $y = -(x + 3)(x + 1)(x - 1)^2$

b)
$$y = \frac{2}{3}(x+3)(x+1)(x-1)^2$$

d)
$$x < -3, -1 < x < 1, x > 1$$

16. a)
$$x < -3$$
 or $x > 4$ b) $-2 < x < \frac{3}{2}$

c)
$$x \le -2$$
 or $-1 \le x \le 5$
17. a) $x = 2$, $y = 0$ b) $x = -3$, $y = 1$

c)
$$x = -3$$
, $x = 3$, $y = 0$ d) $y = 0$

18. a) i)
$$x = -4$$
, $y = 0$ ii) y-intercept $\frac{1}{4}$

iv) decreasing for
$$x < -4$$
 and $x > -4$

v)
$$\{x \in \mathbb{R}, x \neq -4\}, \{y \in \mathbb{R}, y \neq 0\}$$

b) i)
$$x = 2, y = 0$$
 ii) y-intercept 2

iv) increasing for
$$x < 2$$
 and $x > 2$

v)
$$\{x \in \mathbb{R}, x \neq 2\}, \{y \in \mathbb{R}, y \neq 0\}$$

c) i)
$$x = -3$$
, $y = 1$ ii) y-intercept $-\frac{1}{3}$, x-intercept 1

iv) increasing for
$$x < -3$$
 and $x > -3$

v)
$$\{x \in \mathbb{R}, x \neq -3\}, \{y \in \mathbb{R}, y \neq 1\}$$

d) i)
$$x = -\frac{1}{5}$$
, $y = \frac{2}{5}$ ii) y-intercept 3, x-intercept $-\frac{3}{2}$

iv) decreasing for
$$x < -\frac{1}{5}$$
 and $x > -\frac{1}{5}$ v) $\left\{ x \in \mathbb{R}, x \neq -\frac{1}{5} \right\}$, $\left\{ y \in \mathbb{R}, y \neq \frac{2}{5} \right\}$

e) i)
$$x = 0$$
, $y = 0$ ii) no intercepts

iv) increasing for
$$x < 0$$
, decreasing for $x > 0$

v)
$$\{x \in \mathbb{R}, x \neq 0\}, \{y \in \mathbb{R}, y > 0\}$$

f) i)
$$x = -3$$
, $x = 9$, $y = 0$ ii) y-intercept $-\frac{1}{9}$

iv) increasing for
$$x < -3$$
 and $-3 < x < 3$, decreasing for $3 < x < 9$ and $x > 9$

v)
$$\{x \in \mathbb{R}, x \neq -3, x \neq 9\}, \{y \in \mathbb{R}, y \leq -\frac{1}{12}, y > 0\}$$

19. positive increasing slope for
$$x < -3$$
, positive decreasing slope for $-3 < x < 2$, negative decreasing slope for $2 < x < 7$, negative increasing slope for $x > 7$

20. a)
$$\frac{17}{4}$$
 b) 7 c) -2

21. a)
$$x < 4$$
 or $x > \frac{23}{5}$ b) $x < -4$ or $-1 < x \le 3$ or $x \ge 5$

b) R(t) = 0; The chemical will not completely dissolve.

c)
$$\{t \in \mathbb{R}, 0 \le t < 36\}$$

23. a)
$$\frac{3\pi}{4}$$
 b) $-\frac{\pi}{3}$
24. a) 30° b) 202.5°

25.
$$\frac{15\pi + 72}{4}$$

26. a)
$$-\frac{\sqrt{3}}{2}$$
 b) -1 c) $\sqrt{3}$ d) -1

27. a)
$$\frac{1+\sqrt{3}}{2\sqrt{2}}$$
b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$

29.
$$\frac{\sqrt{11} + 10\sqrt{6}}{30}$$

30.
$$\frac{\pi}{Q}$$

31. a) period
$$\pi$$
, amplitude 3, phase shift $\frac{\pi}{2}$ rad to the right, vertical translation 4 units upward

b)
$$\{x \in \mathbb{R}\}, \{y \in \mathbb{R}, 1 \le y \le 7\}$$

32. a) x-intercept
$$\frac{3\pi}{2}$$

b) x-intercepts
$$\frac{\pi}{8}$$
, $\frac{3\pi}{8}$

c) asymptotes x = 0, $x = \pi$, $x = 2\pi$

33. a)
$$\frac{4\pi}{3}$$
, $\frac{5\pi}{3}$ b) $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$ c) $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$

b)
$$y = 1.199 \sin(113.091x) - 0.002$$

d) 135.6 cm/s

d) 135.6 cm/s
35.a)
$$\log_7 49 = 2$$
 b) $\log_8 c = b$ **c)** $\log_8 512 = 3$ **d)** $\log_{11} y = x$

36. a)
$$\log_7 49 = 2$$
 b) $\log_6 8$
36. a) $f(x)$: x-intercept 1, asymptote $x = 0$

36. a)
$$f(x)$$
: x -intercept 1, asymptote $x = 0$ $g(x)$: x -intercept 0, y -intercept 0, asymptote $x = -1$ Window variables: $x \in [-2, 10], y \in [-2, 3]$

b)
$$f(x)$$
: $\{x \in \mathbb{R}, x > 0\}$, $\{y \in \mathbb{R}\}$; $g(x)$: $\{x \in \mathbb{R}, x > -1\}$, $\{y \in \mathbb{R}\}$

b)
$$f(x)$$
: $\{x \in \mathbb{N}, x > 0\}$, $\{y \in \mathbb{N}, x \in \mathbb{N}\}$ **c) 7 a)** $\{x \in \mathbb{N}, x \in \mathbb{N}\}$ **d)** $\{x \in \mathbb{$

38. a) 8 b) 1 c)
$$\frac{1}{2}$$
 d) 5 e) 1 f) -1

39. a) 81 b) 5 c) 16 807 d) 3 e)
$$-7$$
 f) -3

40. 62 min
41. a) alkaline,
$$1.585 \times 10^{-8}$$
 mol/L b) 3.1

42. a)
$$x = 1.29$$
 b) $x = 0.79$ or $x = 1.16$

43. a) 3 b)
$$\frac{3}{2}$$
 c) -2 d) $\frac{1}{3}$

45. a) 3 b)
$$-2$$

46. (1.62, 0.21)
47. a)
$$h = 19.7 \text{ min } \mathbf{b}$$
) approximately 7.03 mg

d) Answers may vary. Sample answer: The graph would decrease faster because the sample would be decreasing at a faster rate.

at a faster rate.
48. a)
$$d = 4.04$$
 years b) approximately 3 229 660

49. a)
$$y = 35\ 000(0.82)^t$$
 b) \$12 975.89

e) Answers may vary. Sample answer: The graph would decrease faster.

51. a)
$$2x^2 + 15x + 22$$
 b) $2x^2 + 3x - 2$ c) -5 d) 117

52. a) 1 b)
$$\frac{1}{4}$$
 c) does not exist d) $\frac{15}{4}$

53. a)
$$f(g(x)) = \sqrt{x+1}, \{x \in \mathbb{R}, x \ge -1\};$$

53. a)
$$f(g(x)) = \sqrt{x} + 1$$
, $\{x \in \mathbb{R}, x \ge 0\}$
 $g(f(x)) = \sqrt{x} + 1$, $\{x \in \mathbb{R}, x \ge 0\}$

$$g(f(x)) = \sqrt{x} + 1, \{x \in \mathbb{R}, x \ge 0\}$$
b) $f(g(x)) = \sin(x^2), \{x \in \mathbb{R}\}; g(f(x)) = \sin^2 x, \{x \in \mathbb{R}\}$

b)
$$f(g(x)) = \sin(x)$$
, $\{x \in \mathbb{R}\}$, $g(f(x)) = |x|^2 - 6$, $\{x \in \mathbb{R}\}$

c)
$$f(g(x)) = |x^2 - 6|$$
, $\{x \in \mathbb{R}\}$; $g(f(x)) - |x|$
6, $\{x \in \mathbb{R}\}$
d) $f(g(x)) = 2^{(3x+3)}$, $\{x \in \mathbb{R}\}$; $g(f(x)) = 3(2^{x+1}) + 2$, $\{x \in \mathbb{R}\}$
e) $f(g(x)) = 6\sqrt{x-3} + x + 6$, $\{x \in \mathbb{R}, x \ge 3\}$;

e)
$$f(g(x)) = 2$$
, $(x \in \mathbb{R}, x \geq 3)$;
e) $f(g(x)) = 6\sqrt{x-3} + x + 6, \{x \in \mathbb{R}, x \geq 3\}$;

e)
$$f(g(x)) = 6\sqrt{x - 3 + x} + 6$$
, $\{x \in \mathbb{R}, x = 3\}$, $g(f(x)) = \sqrt{x^2 + 6x + 6}$, $\{x \in \mathbb{R}, x \le -3 - \sqrt{3}, x \le -3 - \sqrt{3},$

$$g(f(x)) = 3^{\log x + 1}, \{x \in \mathbb{R}, x > 0\}$$
54. a) $y = -\frac{2}{\sqrt{x}}$ b) $\{x \in \mathbb{R}, x > 0 \text{ c) neither}$

56. a) approximately
$$(-\infty, -4.43)$$
 or $(-3.11, -1.08)$ or $(3.15, \infty)$

b) approximately [-1.69, 2]

57. a)
$$h(t) = 20 \sin\left(\frac{\pi t}{1.5}\right) + 22$$

c) The period of $h(\theta)$ is 2π rad. The period of h(t) is 30 s.

58. a)
$$W(t) = 3\sqrt{100 + 25t}$$

b)
$$(t \in \mathbb{R}, t \ge 0), \{W \in \mathbb{Z}, W \ge 30\}$$

59. a)
$$C(t) = 16 \times 2^{\frac{t}{20}} + 53.12$$

c) approximately 31 years

PREREQUISITE SKILLS APPENDIX ANSWERS

Angles From Trigonometric Ratios, page 484

1. a) 18.8° b) 136.5° c) 70.0° d) -40.9° e) 75.7° f) -74.4°

Apply the Exponent Laws, pages 484–485

1. a)
$$\frac{5}{x^3}$$
 b) $\frac{1}{81x^4}$ c) $7 + \frac{1}{x^6}$ d) $\frac{1}{25}x^6 - \frac{6}{x} + 2x - x^3$

2. a)
$$9x^{\frac{9}{2}} + 6x^{\frac{5}{2}} + x^{\frac{1}{2}}$$
 b) $6x^5 + 9x^4 - 10x - 15$

c)
$$4x^6 - 4x^4 + 8x^3 - 8x$$
 d) $\sqrt{2x^3 - 4x^2 + 10x - 20}$

3. a)
$$81$$
 b) $\frac{1}{1024}$ c) 1 d) 6 e) 125

4. a)
$$20x^9y^7$$
 b) b^3c^3 , a , b , $c \neq 0$ c) $m^{-5}n^2$, m , $n \neq 0$ d) xy^{-4} , x , $y \neq 0$

Apply Transformations to Functions, pages 485–486

- 1. a) vertical translation b) vertical stretch c) horizontal compression d) vertical reflection e) horizontal translation f) horizontal reflection g) horizontal translation h) horizontal stretch i) vertical translation j) vertical stretch
- 2. a) vertical stretch by a factor of 3 and horizontal reflection in the ν-axis
- b) vertical translation downward by 3 units and horizontal compression by a factor of $\frac{1}{2}$
- c) horizontal translation left by 2 units and vertical reflection in the x-axis
- d) vertical compression by a factor of $\frac{1}{3}$, horizontal compression by a factor of $\frac{1}{5}$, and horizontal reflection in the y-axis

Determine Equations of Quadratic Functions, page 486

1. a)
$$f(x) = 2(x-1)(x-5)$$
 b) $f(x) = -(x+2)(x-1)$

c)
$$f(x) = 1.5(x+6)(x+1)$$
 d) $f(x) = 0.5(x+3)(x-0.5)$

Determine Intervals From Graphs, page 487

- 1. a) x-intercepts -2 and 2; above the x-axis for
- -2 < x < 2; below the x-axis for x < -2 and x > 2
- **b)** x-intercepts -3, 0, and 3; above the x-axis for -3 < x < 0and x > 3; below the x-axis for x < -3 and 0 < x < 3

Distance Between Two Points, page 487

1. a)
$$3\sqrt{2}$$
 b) $\sqrt{65}$ c) $\sqrt{74}$ d) $3\sqrt{5}$ e) $3\sqrt{5}$ f) $\sqrt{82}$

Domain and Range, page 488

- **1. a)** $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}\}$
- **b)** $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}\}$
- c) $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}, y \ge -1\}$
- **d)** $\{x \in \mathbb{R}\}, \{y \in \mathbb{R}, y \ge 4\}$
- e) $\{x \in \mathbb{R} \mid x \ge -5\}, \{y \in \mathbb{R}, y \ge 0\}$
- f) $\{x \in \mathbb{R}, x \ge 2\}, \{y \in \mathbb{R}, y \ge 0\}$
- g) $\{x \in \mathbb{R}, x \neq -2\}, \{y \in \mathbb{R}, y \neq 0\}$
- **h)** $\{x \in \mathbb{R}, x \neq 1\}, \{y \in \mathbb{R}, y \neq 0\}$

Equation of a Line, pages 488-489

1. a)
$$y = 2x + 1$$
 b) $y = -4x + 4$

2. a)
$$y = 3x - 1$$
 b) $y = -x - 3$

$$7 = 7 = 3$$

3. a)
$$y = \frac{7}{2}x + \frac{3}{2}$$
 b) $y = -x + 8$

4. a)
$$y = -4x + 4$$
 b) $y = \frac{2}{3}x - 2$

Evaluate Functions, pages 489-490

1. a)
$$-7$$
 b) 35 c) 5 d) $-\frac{89}{27}$ e) 39.221 f) $n^3 + 3n^2 - 4n - 7$

g)
$$-27x^3 + 27x^2 + 12x^2 - 7$$
 h) $x^6 + 3x^4 - 4x^2 - 7$

2. a)
$$-1$$
 b) 20 c) 2 d) $x^2 + 4x - 1$

3. a) 0 b) 2 c) 1 d)
$$\sqrt{x^2}$$
 - 3