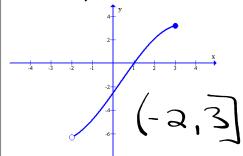
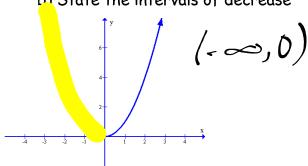

Problem

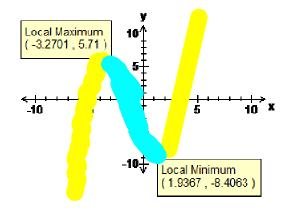
Ten blocks are arranged as illustrated in the following diagram. Each letter shown on the front of a block represents a number. The sum of the numbers on any three consecutive blocks is 19. Determine the value of S.



1.3 Key Graph Features of Functions


Definitions...

- > Intervals of increase: interval(s) where y increases as x increases.
- > Intervals of decrease: interval(s) where y decreases as x increases.
- Turning point: point where the function changes from increasing to decreasing or vice-versa.


Ex 1. a) State the intervals of increase

b) State the intervals of decrease

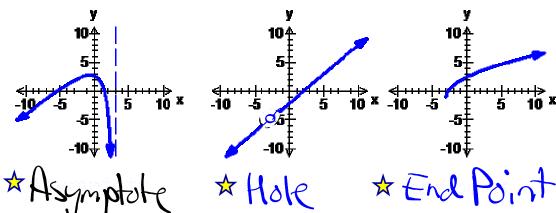
Ex 2. State the intervals of increase and decrease

Intervals of increase:

Interval of decrease: -3.2701 < x < 1.9367

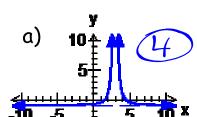
- > Interval notation is a short cut of set notation
 - Square brackets indicate that the endpoint is included Round brackets indicate that the endpoint is NOT included
- Ex 3. Write the following set notation in interval notation.
 - a) $-3 < x \le 1$
- b) $-2 \le x < 5$
- c) $x \ge 0$

> End Behaviours

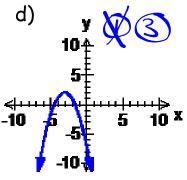

As $x \to \infty$ state if the y-values are increasing or decreasing as x approaches positive infinity

As $x \to -\infty$ state if the y-values are increasing or decreasing as x approaches negative infinity

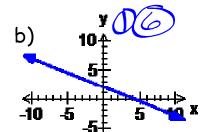
One more definition...

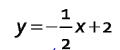

Discontinuous function: function that contains at least one break in its graph.

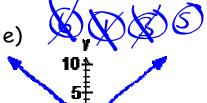
Ex 4.

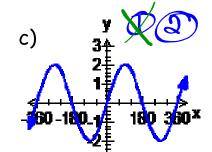

Each of the above functions is discontinuous.

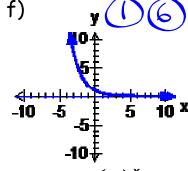
Ex 5. Match each function with a characteristic of its graph. Each number may only be used for one function.




$$y = \frac{2}{(x-3)^2} - 1$$

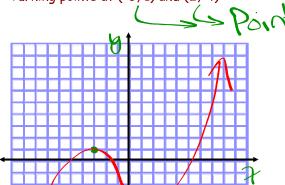

-10-


$$y = -(x-3)^2 + 2$$



$$y = |x|$$

$$y = 2 \sin x$$


$$y = \left(\frac{1}{2}\right)^x$$

Characteristics:

- 1. Domain: $\{x \in \Re\}$
- 2. Infinite number of zeros
- 3. One turning point
- 4. As $x \to \infty, y \to -1$ 5. Range: $\{y \in \Re \mid y \ge 0\}$
- 6. As $x \to -\infty, y \to \infty$

Ex 6. Sketch a possible function that has the following characteristics:

- $\{x \in \mathfrak{R}\}$ Domain:
- Range:
- Increasing on $(-\infty, -3)$ and $(2, \infty)$
- Decreasing on (-3, 2)
- Turning points at (-3, 1) and (2, -4)

What type of function is this?

Cubic Polynomial

Intervals

Periodic Interval Notation

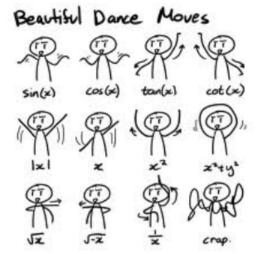
initial angle + period $\bullet k$, $k \in \mathbb{Z}$

Ex 7. State the following for y=cosx

a) zeros

90°+180, nE2

b) intervals of increase


 $(180^{\circ}+360^{\circ}, 360^{\circ}+360^{\circ})$, $n \in \mathbb{Z}$

c) intervals of decrease

 $(0^{\circ}+360^{\circ}, 180^{\circ}+360^{\circ}n), n \in \mathbb{R}$

b) (180,720), (540,720), etc

Homework:
Page 23
#4, 6->12 + Handart

