5.7 Solving Problems with Exponential and Logarithmic Functions

Logarithmic Scales:

When quantities vary over very large ranges it is sometimes convenient to take their logarithm in order to get a more manageable set of numbers. With logarithms, each increase of 1 unit corresponds to a multiplication by a factor of 10.

A. The Richter Scale (base 10)

Richter Scale Magnitude, M: True Intensity Magnitude $M = \log\left(\frac{I}{I_0}\right)$ where $\frac{I}{I_0}$ is the $1 = \log_{10} 10^{1}$ $10^1 = 10$ $2 = \log_{10} 10^2$ $10^2 = 100$ ratio of intensities between the of a standard low-level earthquake. $\frac{10^{4}}{10^{2}} = 10^{2} / \text{catio} = \frac{10^{100}}{10^{100}}$ earthquake being measured and that $10^3 = 1000$ $10^4 = 10\ 000$

A magnitude of 4 compared to a magnitude of 2 is 100 times more intense.

Ex 1 How many times more intense was the 1964 Alaska earthquake of

Sarah claims that she was in an earthquake that was $125 \times as$ intense Ex 2 as one measuring 5.2 on the Richter scale. What was the magnitude of the earthquake she was in?

earthquake she was in?

$$ratio = \frac{10^{7}}{10^{15}}$$

$$125 = \frac{10^{7}}{10^{5\cdot 2}}$$

$$10^{7} = 125 \cdot 10^{5\cdot 2}$$

$$10^{10} = \log_{10}(125 \cdot 10^{5\cdot 2})$$

$$10^{10} = \log_{10}(125 \cdot 10^{5\cdot 2})$$

$$10^{10} = 10$$

$$10^{10} = 7.3$$
of her garke was
$$7.3$$

Dec 9-9:31 AM

B. The Decibel Scale (base unit is the "Bel"..measures loudness)

Loudness (dB) L = 10 log
$$\left(\frac{I}{I_o}\right)$$
 intensity of a given sound [watts/m²] intensity of a barely audible sound I_o = 10^{-12} w/m²

Intensity (I)	Ratio (I / Io)	Loudness (B)	Loudness (dB)
10-12	10º	0	0
10-11	10^{1}	1	10
10-10	102	2	20
10-9	103	3	30
10-8	104	4	40
10-7	105	3	50

Ex 3 How many times louder is a stereo measuring 97 dB than a conversation measuring 43 dB?

Dec 9-9:42 AM

- C. The pH Scale measure of acidity or alkalinity
 - # of hydrogen ions (H+) in a mole of substance
 - 1 mole = 6×10^{23} particles
 - scale ranges from 0 to 14
 - $0 \Rightarrow 7$ is acidic, 7 is neutral, $7 \Rightarrow 14$ is basic

Formula: pH = -log [concentration of H^+] or pH = -log [H^+] measured in mol/L

Ex 4 Determine the pH, where the H⁺ concentration is 0.0047 mol/L.

$$PH = -109.0[H^{+}]$$
 $PH = -109.0(0.0047)$
 $= 2.3$
.: 41.000
 $= 2.3$

Ex 6 Calculate the # of moles of H⁺ per litre for a solution with pH = 7.4

D. Exponential Growth and Decay

Ex 5 A \$150 000 yacht depreciates 10% per year. How long does it take for the yacht to be worth \$96 000?

A= 96000

$$A = 6000$$
 $A = 6000$
 $A = 60$

Extea Review

P. 477, 478

P. 509

P. 510 # 1-22 Homework

P. 512 # 1-9 (Not)

P. 499 #1-

3,8,10,13-15

