4.2 Compound Interest

Recall: Compound interest pays interest on interest.

DON'T COPY... this is just like yesterdays process.

Eg. Chris puts \$2500 in a bank account that earns 8% compound interest, per year. How much is earned after 5 years?

Year	Amount at start of year (\$)	Interest (\$)	Amount at end of year(\$)
1	2500	2500 * 0.08 = 200	2700
2	2700	2700 * 0.08 = 216	2916
3	2916	2916 * 0.08 = 233.28	3149.28
4	3149.28	3149.28 * 0.08 = 251.94	3401.22
5	3401.22	3401.22 * 0.08 = 272.10	3673.32

How can we get directly to the amount at the end of the year, i.e. without calculating the interest and adding?

Still DON'T COPY... this is just another way of looking at it...

	Amount at start of year (\$)	Amount at end of year(\$)
1	2500	(2500)(1.08) = 2700
2	(2500)(1.08)	(2500)(1.08)(1.08)
3	(2500)(1.08)(1.08)	(2500)(1.08)(1.08)(1.08)
4	(2500)(1.08)(1.08) (1.08)	(2500)(1.08)(1.08)(1.08) (1.08)
5	(2500)(1.08)(1.08) (1.08)(1.08)	(2500)(1.08)(1.08)(1.08) (1.08)(1.08)

What's the pattern?

NOW COPY... 5.2 Compound Interest

Quite often... interest is calculated more than once per year on an investment, yet the given rate is always expressed as an ANNUAL rate.

$$A = P(1+i)^n$$
Notice it is exponential growth!
$$A = a_0(b)^n$$

A Amount in \$ at the end of the investment

borrowed

P
Principal
original \$
invested or

i interest rate per period

n number of compounding periods

n = # of years x # of periods per year

Compounding Periods	# of periods per year
annually	1
semi annually	7
quarterly	4
monthly	12
weekly	52
daily	365

 $\underline{Ex 1}$. Noah invests \$800 in a GIC that pays 4% compounded annually for 5 years. Determine the amount when the investment matures.

$$A = P(1 + i)^{n}$$

$$P = 800$$

$$i = 0.04$$

$$n = 5$$

$$A = 973.32$$

$$A = ?$$

$$\therefore T_{e \text{ amount ofter } 5 \text{ g/s}}$$

$$is 973.32$$

 $E \times 2$. Gregory invests \$500 at 3.75% compounded quarterly. How much interest will he earn in 4.5 years?

$$A = ?$$

$$P = 500$$

$$A = 500(1+0.009375)^{18}$$

$$A = 500(1+0.009375)^{18}$$

$$= 500(1.009375)^{18}$$

$$= 591.45$$

$$= 18$$

$$1 = 0.0375 \qquad \text{fate}$$

$$4 + \text{times per year}$$

$$= 591.45 - 500$$

$$= 91.45$$

:. Greg will ean \$91.45 in interest

Homework: Page 432 #2, 3, 8, 9