Dangle Die PCB – Assignment We have spent the week researching, and now we will formalize the requirements into an assignment. This assignment is due Friday October 28th, 2022 – by the end of class (9:15am) ### Original Requirements - At least seven LEDs arranged to look like a die: - A 2032 coin cell battery - An ATTiny85 - One push button - One two-position switch (ON-OFF switch) - Associated resistors - One mounting hole for slipping in a wire/string - All in roughly one-inch square #### Clarifying those requirements now that we have researched and prepared our project: - You can choose whether or not to Charlieplex all the LEDs, or simply Charlieplex 6 LEDs and have one connected directly but you must Charlieplex at least 6 LEDs. - This assignment does not include function code for the dice-roller, but rather only requires enough code to demonstrate the functionality of your wiring. This code will not be marked, but the demonstration of functionality will (more on this later) #### Deliverables (what you need to submit) - Improper submissions will receive a penalty. If in doubt, please clarify. - If you are not in a position to record a video, ask for assistance. - You are to submit ONE EMAIL THAT CONTAINS THE FOLLOWING (see appendix for example) - o A link to a video of your TinkerCAD circuit demonstrating its functionality - A link to a video of your breadboarded circuit demonstrating its functionality - Videos uploaded to Google Drive, and the shared link pasted into the email - A PDF document that has screenshots of - Your TinkerCAD circuit - Your Breadboard - Your schematic - Your PCB - An OSHPark screenshot of your uploaded board - Your KiCAD schematic file - o Your KiCAD PCB file Since we are actually planning to manufacture this board, the following real-life restrictions must be followed: - Be sure to set the following tolerances <u>before you begin creating your PCB</u> - Once at the stage you are importing parts onto your PCB, be sure to set the following setting - File → Board Setup → Design Rules - → Net Classes - Default clearance of 0.3mm - → Constraints - Copper to edge clearance: 0.5mm - o All corners must be rounded with at least a 2mm radius - o Silk screen characters with a text height of less than 1mm will be unidentifiable - Courtyards may overlap, if physically possible (need to verify with your parts!) - o Silk screen may be cut off by board edge, holes or pads - But do your best to avoid it - The two-position switch MUST ride the board edge in order to expose the actual switch to the user. - o Failure to follow these constraints will result in a mark deduction. Here are the components you must use within the schematics editor: ATTiny: ATtiny85-20SBattery: Battery_Cell • LED: LED Mounting Hole: MountingHolePush Button: SW_PUSH • Resistor: R • Two-position switch: SW SPDT #### Here are the footprints you must use within the PCB editor: ATTiny: Package_DIP:DIP-8_W7.62mm_Socket_LongPads Battery: WCSS-Footprints:BATT COIN 20MM (BH-67D-5) LED: WCSS-Footprints:LED_3528_HandSolder Mounting Hole: MountingHole:MountingHole_3mm • Push Button: Button Switch THT:SW PUSH 6mm Resistor: Resistor_THT:R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal Two-position switch: WCSS-Footprints:SW SPDT SMD # Marking Guide | Expectation | R | 1 | 2 | 3 | 4 | |-----------------------------------|---|--|--|---|--| | TinkerCAD | Prototype has significant errors | Prototype has some minor errors | Prototype is fully
functional | Prototype is fully
functional, all wiring is
visible, no double use
of breadboard holes | Prototype is fully functional, cleanly wired and thoughtfully laid out | | TinkerCAD
Demo | No demo, or is
unusably
ambiguous | Buttons and lights
seem connected
with some
functionality | Lights are clearly
lit up and button
produces change
in behaviour | Clearly demonstrates
that each light is
uniquely accessible,
and that the button
can be read by the
ATTiny | Button is used to cycle
between individual lit
LEDs | | Breadboard | Significant
difficulty tracing
wires and/or
difficult layout
choices. | Breadboard wiring is
traceable – some
oversized or
overlapping wires.
Layout is still
thoughtfully
arranged. | Breadboard
wiring is still
easily traceable
and clean, but
some overlapping
/ unstraightened
wires | Board has clear wiring with minimal / purposeful overlap. All connections are clearly visible with fairly straight wires. | Board is exceptionally clean in design and layout. All wiring is very clear, wires are straight with very little / no overlapping. | | Breadboard
Demo | No demo, or is
unusably
ambiguous | Buttons and lights
seem connected
with some
functionality | Lights are clearly
lit up and button
produces change
in behaviour | Clearly demonstrates
that each light is
uniquely accessible,
and that the button
can be read by the
ATTiny | Button is used to cycle
between individual lit
LEDs | | KiCAD
Schematic | KiCAD schematic
has significant
errors in design | KiCAD schematic is
functional and not
missing any
connections | KiCAD schematic
is functional and
connections are
clear | KiCAD schematic is
mostly clear and well
laid out | KiCAD schematic is clear
and very well laid out,
including helper text and
graphic lines as
appropriate | | KiCAD
PCB Layout | kiCAD PCB layout
is missing key
components
and / or has other
significant
problems | KiCAD PCB layout is
mostly functional
with at most two
concrete problems. | KiCAD PCB layout
has functional
layout | KiCAD PCB layout has
convenient layout that
keeps the user in
mind. | KiCAD PCB layout has
convenient layout that
keeps the user in mind.
Good use of space.
Insightful placements. | | KiCAD
PCB Wiring | KiCAD PCB Wiring
has unconnected
components | KiCAD PCB Wiring
has all connections
wired. | KiCAD PCB Wiring
has is properly
connected and no
copper pour
islands | KiCAD PCB Wiring also
minimizes long traces
and vias | KiCAD PCB Wiring also
strives for symmetry
where possible | | KiCAD
Silk
Screening | Silk Screen
presents a
significant barrier
when placing
parts | Silk Screen is mostly
clear and readable,
with part labels
discernable | Silk Screen took
care to align all
labels
conveniently and
avoided clipping | Silk Screen includes
functional pieces,
name, course code | Silk Screen goes beyond
level 3 to include
graphics to enhance the
board | | KiCAD Design Rules Check | DRC reports more
than two errors
and/or many
warnings that
need addressing | DRC reports no
more than two
errors, and few
warnings that need
addressing | DRC reports at
most one error
and few warnings
that need
addressing | DRC reports no errors
and only a few
warnings that need
addressing | DRC reports no errors
and no warnings other
than appropriate
overlaps | | PCB Size | > 1800 mm ² |
1600 mm² |
1400 mm² |
1200 mm2 | < 1089 mm ² | # Appendix A: Breadboarding Exemplars Level 4++ Level 3 ### Appendix B: Example Email Hey Mr. Emmell, Here is my Dangle Die assignment. Please find the two videos here: TinkerCAD Demo: https://docs.google.com/presentation/d/12i74b-6XBspVFlZoe77RK rQ- QmkEMyniwzCxTr2ZFk/present Breadboard Demo: https://docs.google.com/presentation/d/12i74b-6XBspVFlZoe77RK rQ- QmkEMyniwzCxTr2ZFk/present Please find everything else attached: Emmell-Project-Screenshots.pdf Emmell-Project.kicad_sch Emmell-Project.kicad_pcb You rock, Student Name