Lesson 4.0: Review of Trigonometry

Recall: In a right triangle, the primary trig ratios are:

These ratios compare the lengths of the sides of a triangle. Trig stems from similar triangles. Any right triangle with a 30° angle (for example), whatever its size, will have the same ratio of sides lengths because the angles are the same!

Recall: To "solve a triangle" means to find the measures of all 3 sides and all 3 angles.

Ex. 1 In $\triangle A B C, \angle A=90^{\circ}, \angle B=32^{\circ}$, and $c=19.2 \mathrm{~cm}$. Solve the triangle. Include

$$
\begin{array}{rlrl}
\angle C= & 180-90-32 ; & a^{2} & =b^{2}+c^{2} \\
& =58^{\circ} \\
& =12^{2}+19.2^{2} \\
& =512.64 \\
\underline{b} \tan B=\frac{o p p}{a d j} ; \quad a & =\sqrt{512.64} \\
\tan 32^{\circ}=\frac{b}{19.2} ; & & =22.64 \\
19.2 \cdot \tan 32^{\circ}=b ; & & =22.6 \\
b \doteq 12: & a & =22.6 \mathrm{~cm} \\
b & =12 \mathrm{~cm} \\
\angle c & =580^{\circ}
\end{array}
$$

$$
\begin{aligned}
& \text { Ex. } 2 \operatorname{In} \triangle D E F,<E=90^{\circ}, \mathrm{d}=4.3 \mathrm{~m} \text {, and } \mathrm{e}=5.9 \mathrm{~m} \text {. Solve for }<F \text {. } \\
& \cos \theta=\frac{a d j}{h_{y p}} \\
& \cos \theta=\frac{4.3}{5.9} \\
& \theta=\cos ^{-1}\left(\frac{4.3}{5.9}\right) \\
& \therefore 43^{\circ}
\end{aligned}
$$

But what if the triangle is not right-angled?
Recall:

We will derive these formulas in lesson 4.4 A

Ex. 3 Solve for c in $\triangle A B C$, if $\angle A=67^{\circ}, \angle C=38^{\circ}$, and $\mathrm{a}=7.2 \mathrm{~cm}$.

$$
\begin{aligned}
\text { USE } \sin E & \text { LAN! } \\
\frac{c}{\sin C} & =\frac{a}{\sin A} \\
\frac{c}{\sin 38^{\circ}} & =\frac{7.2}{\sin 67^{\circ}}
\end{aligned}
$$

$$
c=\sin 38^{\circ} \cdot \frac{7.2}{\sin 67^{\circ}}
$$

$$
c=4.8 \mathrm{~cm}
$$

$$
=4.8
$$

Ex. 4 Solve for the unknown angle θ.

$$
\begin{aligned}
& \begin{array}{c}
\text { All three sides! } \\
\operatorname{cosin} E L A \omega
\end{array} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 19.2^{2}=21.2^{2}+15.1^{2}-2(21.2)(15.1) \cos \theta \\
& \frac{19.2^{2}-21.2^{2}-15.1^{2}}{-2(21.2)(15.1)}=\cos \theta \\
& 0.4823=\cos \theta \\
& \theta=\cos ^{-1}(0.4823) \\
&=61.2^{\circ}
\end{aligned}
$$

p. 220 \#3a, 5b, 6c, 7, 8, 11-13

