Lesson 4.1: Angles between 0° and 360°

An angle is in standard position when its vertex is at the origin and its initial arm is on the positive x-axis.

Consider the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the terminal arm of angle θ in standard position.

$$
\sin \theta=\frac{y}{r}
$$

The side opposite to θ is y.
The side adjacent to θ is x.
The hypotenuse is r.

$$
\cos \theta=\frac{x}{r}
$$

Pythagorean Theorem
$\tan \theta=\frac{y}{x}$

Principal Angle 9
The angle measured between the initial arm and the terminal arm.

Reference Angle or Related Acute Angle $\left(\frac{1}{\text {, }}\right.$ The angle between the terminal arm and the x-axis $\left(\theta_{r}<90^{\circ}\right)$.

$\theta_{r}=\theta$

$\theta_{r}=180-\theta$

$\theta_{r}=\theta-180$
$\theta_{r}=360-\theta$

Exploring the primary trigonometric ratios on a coordinate grid.

Terminal arm is in Quadrant 1

Terminal arm is in Quadrant 3

Terminal arm is in Quadrant 2

Terminal arm is in Quadrant 4

- For each of the above examples determine the reference/related acute angle, θ_{r}
- Evaluate
$\sin 45=0.7071 \quad \sin 135=0.7071 \quad \sin 225 \doteq-0.7071 \quad \sin 315 \doteq-0.7071$

What do you notice?
The Principal Angle and the Reference Angle have the same trig ratios. The only differences are with signs.

Ex 1: Given the following points on the terminal arm of θ, determine $\sin \theta, \cos \theta, \tan \theta$, and θ.
a) $P(4,3)$
$x=4$
b) $P(4,-3)$
$x=4$
$\begin{aligned} r_{4}^{r / 3} \quad r^{2} & =4^{2}+3^{2} \\ r & =\sqrt{25} \\ & =5\end{aligned}$
$y=3$
$r=5$
$r^{2}=4^{2}+(-3)^{2}$
$r=\sqrt{25}$
$y=-3$
$r=5$

Quadrant I Note : $\theta=\theta_{r}$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \rightarrow \frac{3}{5} \\
& \cos \theta=\frac{x}{r} \rightarrow \frac{4}{5} \\
& \tan \theta=\frac{x}{y} \rightarrow \frac{3}{4}
\end{aligned}
$$

Solve for θ :

$$
\begin{aligned}
\sin \theta & =\frac{3}{5} \\
\theta_{r} & =\sin ^{-1}\left(\frac{3}{5}\right)
\end{aligned}
$$

$$
\doteq 36.9^{\circ}
$$

Quadrant IV

Solve for θ :

$$
\begin{array}{rlr}
\cos \theta & =\frac{4}{5} & \theta=360^{\circ}-\theta_{r} \\
\theta_{r} & =36.9^{\circ} \quad \therefore \theta=323.1^{\circ} \\
\sin \theta & =\frac{-3}{5} & \\
\theta & =-36.9^{\circ} &
\end{array}
$$

Ex. 2: Evaluate, to four decimal places.
a) $\cos 154^{\circ}$
b) $\tan 230^{\circ}$

$$
\doteq-0.8988
$$

$$
\doteq 1.1918
$$

Co-terminal Angles:

- Angles with the same terminal arm.
- They can be positive or negative.

Ex. 3: Draw an angle of 125° in standard position.
a) What is the principal angle? $\quad \theta=125^{\circ}$
b) What is the related acute angle? $\quad \theta_{r}=\underline{55}$

c) Determine a positive angle that is co-terminal

$$
\begin{aligned}
& \theta=\frac{360+125}{} \\
&=485^{\circ} \\
& \theta=-(180+55 \\
&=-235^{\circ}
\end{aligned}
$$

d) Determine a negative angle that is co-terminal $\theta=-(180+55)$

Ex. 4: Determine another angle, with a different terminal arm, that would have the same trig ratios as the one given. Include a diagram.

p. 237 \# 1ace, 3bcd, 4ace, 5, 11, 12a, 16

