Lesson 4.2: Special Angles and the Unit Circle

Consider the following triangles.

Determine the measure of all of the sides and the angles.

These are the **Special Triangles**:

$$\frac{45^{0} \text{ (Right Isosceles Triangle)}}{\sin 45^{0} = \frac{1}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{2}}$$

$$\cos 45^{0} = \frac{1}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{2}$$

$$\tan 45^{0} = \frac{1}{1} \Rightarrow \frac{1}{2}$$

$$\frac{30^{\circ},60^{\circ} \quad \text{(Half an Equilateral Triangle)}}{\sin 30^{\circ} = \frac{1}{2}} \qquad \qquad \sin 60^{\circ} = \frac{\sqrt{3}}{2}} \\ \cos 30^{\circ} = \frac{\sqrt{3}}{2} \qquad \qquad \cos 60^{\circ} = \frac{1}{2} \\ \tan 30^{\circ} = \frac{1}{\sqrt{3}} \rightarrow \frac{\sqrt{3}}{3} \qquad \tan 60^{\circ} = \frac{\sqrt{3}}{3} \rightarrow \frac{\sqrt{3}}{3}$$

The Unit Circle: The unit circle is a way to "standardize" the ratios of the special angles onto one diagram.

The original special triangles:

 $\frac{\sqrt{2}}{1} = 1$ $\frac{\sqrt{3}}{\sqrt{3}}$

Now, make the hypotenuse 1:

Note: These are similar triangles to the original triangles.

Consider these triangles on a circle with radius of 1 (the terminal arm is 1 unit long).

In general:

$$\cos \theta = \frac{x}{1}$$
 $\sin \theta = \frac{y}{1}$ $\tan \theta = \frac{y}{x}$

Think about the following...

- What happens to the y values as you rotate?
- What happens to the x values as you rotate?
- Connect the CAST rule to your knowledge of reflecting in the x-axis or y-axis.

The unit circle allows us to understand the values of trig ratios for <u>axis angles</u>.

Terminal arm lies on the x-axis or y-axis

	00	90°	180°	270°	360°
sin θ	\bigcirc		0	- (\bigcirc
cos θ	J	0	-1	0	1
tan θ	0= 10	J=UN DEF	<u>6</u> = 0	J= U2	9=0

Ex. 1 Determine the exact values.

a)
$$\cos 60^{\circ} \frac{1}{2}$$

b)
$$\sin 45^{\circ}$$

= $\frac{\sqrt{2}}{2}$

c)
$$\tan 30^{\circ}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{2} \times \frac{2}{\sqrt{3}}$$

$$= \frac{1}{2} \times \frac{2}{\sqrt{3}}$$

Exact Values
NO ROUNDING
NO DECIMALS
NO CALCULATOF

d)
$$\sin 240^{\circ}$$
 $O_{r} = 240 - 180$ (Q3)
 $= 60^{\circ}$

$$5in 240^{0} = -\frac{\sqrt{3}}{2}$$

Process

- 1. Determine the quadrant.
- 2. Diagram & find related angle.
- 3. Use special angles to write an equivalent ratio.
- 4. Use CAST rule to determine sign (+ or -).

f) $\sin 150^{\circ}$

g) $\tan(-300^{\circ})$

.

Ex. 2 Determine <u>all</u> possible values for $0 < \theta < 360^{\circ}$.

- a) $\sin \theta = \frac{1}{\sqrt{2}}$ $\Theta = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ $\Rightarrow \int_{-\infty}^{\infty} A$

- **Process**
- 1. Determine the quadrants.
- 2. Draw a diagram with terminal arms.
- 3. Determine the related angle.
- 4. Find the principal angles.

d)
$$\sin \theta = -1$$

e)
$$\tan \theta = undefined$$

Ex 3: Evaluate the following using exact values.

$$\sin 30^{\circ} \cos^{\circ}(225^{\circ}) - \tan(-60^{\circ})$$

$$= \sin 30^{\circ} \cos^{\circ}(225^{\circ})^{2} - \tan(-60^{\circ})$$

$$= \frac{1}{2} \left(-\frac{\sqrt{2}}{2}\right)^{2} - \left(-\frac{\sqrt{3}}{1}\right)$$

$$= \frac{1}{2} \left(\frac{2}{4}\right) + \sqrt{3}$$

$$= \frac{1}{4} + \frac{4\sqrt{3}}{4}$$

$$= \frac{1 + 4\sqrt{3}}{4}$$

p.228 #3b, 6, 17 p.237 #6ace, 7, 9, 10, 16

