Lesson 4.2 : Special Angles and the Unit Circle

Consider the following triangles.

Determine the measure of all of the sides and the angles.

These are the Special Triangles:

$$
\begin{gathered}
45^{0} \text { (Right Isosceles Triangle) } \\
\hline \sin 45^{\circ}=\frac{1}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{2} \\
\cos 45^{\circ}=\frac{1}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{2} \\
\tan 45^{\circ}=\frac{1}{1} \rightarrow 1
\end{gathered}
$$

$\begin{array}{ll}30^{\circ}, 60^{\circ} & \text { (Half an Equilateral Triangle) } \\ \sin 30^{\circ}=\frac{1}{2} & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\ \cos 30^{\circ}=\frac{\sqrt{3}}{2} & \cos 60^{\circ}=\frac{1}{2}\end{array}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}} \rightarrow \frac{\sqrt{3}}{3} \tan 60^{\circ}=\frac{\sqrt{3}}{1} \rightarrow \sqrt{3}$

The Unit Circle: The unit circle is a way to "standardize" the ratios of the special angles onto one diagram.

The original special triangles:

Now, make the hypotenuse 1:

$\downarrow \div 2$

Note: These are similar triangles to the original triangles.
Consider these triangles on a circle with radius of 1 (the terminal arm is 1 unit long).

In general:

$$
\cos \theta=\frac{x}{1} \quad \sin \theta=\frac{y}{1} \quad \tan \theta=\frac{y}{x}
$$

Think about the following...

- What happens to the y values as you rotate?
- What happens to the x values as you rotate?
- Connect the CAST rule to your knowledge of reflecting in the x-axis or y-axis.

The unit circle allows us to understand the values of trig ratios for axis angles.
Terminal arm lies on the x-axis or y-axis

	0°	90°	180°	270°	360°
$\sin \theta$	0	1	0	-1	0
$\cos \theta$	1	0	-1	0	1
$\tan \theta$	$\frac{\sigma}{1}=0$	$\frac{1}{0}=\frac{U N}{D E F}$	$\frac{\sigma}{-1}=0$	$\frac{-1}{0}=\cup N$	$\frac{O}{1}=0$

$\cos \theta)_{0}^{\infty}$

Ex. 1 Determine the exact values.
a) $\cos 60^{\circ} \frac{1}{2}$
d) $\sin 240^{\circ}$

$$
\begin{aligned}
& \theta_{r}=240-180 \quad(Q 3) \\
&=60^{\circ} \\
& \sin 240^{\circ}=-\frac{\sqrt{3}}{2} \\
& Q 3
\end{aligned}
$$

e) $\tan 135^{\circ}$

b) $\begin{aligned} & \sin 45^{\circ} \\ &= \frac{\sqrt{2}}{2}\end{aligned}$

$$
=\frac{\sqrt{2}}{2}
$$

c) $\tan 30^{\circ}$

$$
\begin{aligned}
=\frac{1}{\sqrt{3}} & =\frac{1}{2} \div \frac{\sqrt{3}}{2} \\
=\frac{\sqrt{3}}{3} & =\frac{1}{2} \times \frac{2}{\sqrt{3}} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
=\frac{\sqrt{3}}{3}
$$

g) $\tan \left(-300^{\circ}\right)$

$$
\begin{aligned}
\tan \left(-300^{\circ}\right) & =\frac{\sqrt{3}}{1} \\
& =\sqrt{3}
\end{aligned}
$$

Ex. 2 Determine all possible values for $0<\theta<360^{\circ}$.

Process

1. Determine the quadrants.
2. Draw a diagram with terminal arms.
3. Determine the related angle.
4. Find the principal angles.
b) $\tan \theta=-\frac{1}{\sqrt{3}}$
$\theta_{r}=30^{\circ}$

Q2

$$
\begin{aligned}
\theta & =180-30^{\circ} \\
& =150^{\circ}
\end{aligned}
$$

$$
\therefore \theta=150^{\circ}, 330^{\circ}
$$

d) $\sin \theta=-1$
$\theta=270^{\circ}$

$$
\begin{aligned}
\frac{Q 3}{\theta} & =180+60 & \begin{aligned}
& Q 4 \\
&=240
\end{aligned} & \begin{aligned}
\theta & =360-60 \\
& =300^{\circ}
\end{aligned}
\end{aligned}
$$

$$
\therefore \theta=240,300^{\circ}
$$

e) $\tan \theta=$ undefined
$\therefore \theta=45^{\circ}, 135^{\circ}$

c) $\sin \theta=\frac{-\sqrt{3}}{2}$	S	A
$\theta_{r}=60^{\circ}$	\square	C

$$
\theta=90^{\circ}, 270^{\circ}
$$

$$
\begin{aligned}
& \frac{Q 1}{\theta=45^{\circ}} \quad \frac{Q 2}{\theta=180-45^{\circ}} \\
& =135^{\circ}
\end{aligned}
$$

Ex 3: Evaluate the following using exact values.

$$
\begin{aligned}
& \sin 30^{\circ} \cos ^{2}\left(225^{\circ}\right)
\end{aligned}-\tan \left(-60^{\circ}\right) ~ 子 \underbrace{\sin 30^{\circ}} \underbrace{\left[\cos 225^{\circ}\right]^{2}}-\underbrace{\tan \left(-60^{\circ}\right)}
$$

