Lesson 4.4A Problems in Two Dimensions Day 1

Development of the Sine Law:
Consider $\triangle \mathrm{ABC}$ (no 90° angle).
Construct an altitude from A.
There are now 2 right triangles.

STEPS:

1. Write equations for $\sin B$ and $\sin C$.
$\Rightarrow \quad \sin B=\frac{h}{c} \quad \sin C=\frac{h}{b}$
2. Solve each equation for h.
$\Rightarrow c \sin B=h \quad b \sin C=h$
3. Since both equations $=h$,
$\Rightarrow \quad \therefore c \sin B=b \sin C$ they must equal each other.
4. Divide both sides by b and c.
$\Rightarrow \quad \frac{\sin B}{b}=\frac{\sin C}{c}$

The Sine Law
In $\triangle A B C$,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad \text { or } \quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Development of the Cosine Law:

- consider $\triangle \mathrm{ABC}$ (no 90°)
- construct an altitude from A
- notice that there are now 2 right triangles

In $\triangle A D C$:

- Write the Pythagorean theorem

$$
\begin{aligned}
b^{2} & =x^{2}+h^{2} \\
\therefore h^{2} & =b^{2}-x^{2}
\end{aligned}
$$

- Write the cosine ratio for C

$$
\begin{aligned}
& \cos C=\frac{x}{b} \\
& x=b \cdot \cos C
\end{aligned}
$$

In $\triangle \mathrm{ABD}$:

- Write the Pythagorean theorem
- Expand and simplify
- Substitute from \triangle ADC

$$
\begin{aligned}
& c^{2}=h^{2}+(\underline{a-x})^{2} \\
& c^{2}=h^{2}+\underline{a^{2}-2 a x+x^{2}} \\
& c^{2}=\left(b^{2}-x^{2}\right)+a^{2}-2 a x+x^{2} \\
& c^{2}=b^{2}+a^{2}-2 a x \\
& c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C
\end{aligned}
$$

The Cosine Law In $\triangle A B C$,

$c^{2}=a^{2}+b^{2}-2 a b \cos C \quad$ rearrange --> $\quad \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
(Used when finding an angle).

Ex. 1 Find the length of FH.
Right Triangles! SOHCAHTOA step by step to get the info
you need.

$$
\begin{array}{rlrl}
- \text { Find } \theta \\
- \text { Find } \alpha \\
- \text { Find } x & \theta & \theta & \\
& & \theta & =\frac{8.7}{10.4} \\
& & & =40^{\circ}
\end{array}
$$

$$
\alpha ?
$$

$$
\begin{aligned}
\alpha & =180^{\circ}-40^{\circ}-81.4^{\circ} \\
& =58.6^{\circ}
\end{aligned}
$$

$$
\frac{x^{?}}{\sin \alpha}=\frac{11.5}{x}
$$

the length of

$$
\sin 58.6^{\circ}=\frac{11.5}{x}
$$

$$
F H \text { is } 13.5
$$

$$
\begin{aligned}
7 & =\frac{11.5}{\sin 58.6} \\
& =13.5
\end{aligned}
$$

Ex. 2 From the top of a 120 m tall building, the angle of elevation to the top of another building is 47° and the angle of depression to the bottom of the same building is 36°. How high is the second building?

$$
\begin{aligned}
\tan 36^{\circ} & =\frac{120}{\omega} \\
\omega & =\frac{120}{\tan 36^{\circ}} \\
& =165.2
\end{aligned}
$$

$$
\tan 47^{\circ}=\frac{x}{165.2}
$$

$$
\therefore \text { Height is } 177.2+120
$$

$$
=297.2 \mathrm{~m}
$$

Ex. 3 Find the length of $B C$ to one decimal place.

Cosine Law for $A C$
sum of angles for B
Sine law for x

$$
\left.\begin{array}{l}
\frac{A C ?}{d^{2}}
\end{array}=c^{2}+a^{2}-2 c a \cos D\right]
$$

$x^{\text {? }}$? Sine low

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

\therefore Length of

$$
\frac{x}{\sin 45^{\circ}}=\frac{6.9}{\sin 85^{\circ}}
$$ $B C$ is 4.9 cm

Ex. 4 Find the length of $A C$ to the nearest tenth.

- Find $\angle D C B$
- Sine law for a

$$
- \text { Find } \angle A D C
$$

$$
\begin{aligned}
& \frac{a}{a} \quad \frac{20}{\sin 35^{\circ}} \\
& \begin{aligned}
\sin 25^{\circ}
\end{aligned} \quad \text { Use som for } x \\
& a=\sin 35^{\circ} \cdot \frac{20}{\sin 25^{\circ}} \\
&=27.14
\end{aligned}
$$

$x ?$

$$
\begin{aligned}
\sin 60^{\circ} & =\frac{x}{27.14} \\
x & =23.5
\end{aligned}
$$

\therefore Length of $A C$ is 23.5 cm

