Lesson 4.5 Problems in Three Dimensions
 Strategies for solving 3D Trig Problems

- Break the problem into two dimensional triangles.
- Use SOHCAHTOA in right angle triangles.
- Use Sine and Cosine laws in oblique triangles.
- Start in the triangle with the most given information.
- Look for common sides between triangles.
- Communicate your solution carefully - identify the triangle within which you are working.
- Label vertices so that it is simple to refer to side lengths and angles.

Ex. 1 Determine the height of the windmill.

$$
\begin{aligned}
& \begin{aligned}
\frac{a}{\sin 40} & = \\
a & =\sin \sin 110
\end{aligned} \\
&=82.1
\end{aligned}
$$

Ex. 2 Annika and Balerie are standing at opposite ends of a bridge and Charles and Denis are standing in the river below. The angle between Annika's sightliness to Charlie and Denis is 34° and the angle between Balerie's sightlines to Charlie and Denis is 28°. How long is the bridge? Additional measurements are included in the diagram.

$$
\begin{aligned}
\tan 34^{\circ} & =\frac{13}{x} \\
x & =\frac{13}{\tan 34^{\circ}} \\
& =19.3
\end{aligned}
$$

$$
\tan 28^{\circ}=\frac{13}{y}
$$

$y=\frac{13}{\tan 28^{\circ}}$
$\div 24.4$

$$
\begin{aligned}
& z^{2}=19.3^{2}+24.4^{2}-2(19.3)(24.4) \cdot \cos 76^{\circ} \\
& z=27.2
\end{aligned}
$$

The bridge is 27.2 m wide

Ex. 3 A cuboid is shown below. The cuboid has a length of 17 cm , a width of 5 cm , and a height of 8 cm . Determine the size of the angle that BH makes with the plane EFGH.

Ex. 4 Determine the height of the helicopter (H).
Plan of approach
(1) Cosine law w/ flat Δ to find $B C$
(2) Sine law w/ upright Δ to find BH
(3) Use interior angles to find $\angle H B C$

(a) Use sin to solve for h
(1)

$$
x^{2}=200^{2}+160^{2}-2(200)(160) \cos 34^{\circ}
$$

$$
x=112
$$

(2)
(3)

$$
\begin{aligned}
\angle H B C & =180-75-20 \\
& =85^{\circ}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\sin 85^{\circ} & =\frac{h}{39.6} \\
h & =39.5
\end{aligned}
$$

$$
\begin{aligned}
\frac{y}{\sin 20} & =\frac{112}{\sin 75^{\circ}} \\
y & =39.6
\end{aligned}
$$

HOMEWORK page 265 \#1, 2, 4, 5, 7, 12, 18

