Lesson 4.5 Problems in Three Dimensions

Strategies for solving 3D Trig Problems

- Break the problem into two dimensional triangles.
- Use SOHCAHTOA in right angle triangles.
- Use Sine and Cosine laws in oblique triangles.
- Start in the triangle with the most given information.
- Look for common sides between triangles.
- Communicate your solution carefully identify the triangle within which you are working.
- Label vertices so that it is simple to refer to side lengths and angles.

Ex. 1 Determine the height of the windmill.

$$\frac{\alpha}{\sin 40} = \frac{120}{\sin 10}$$

$$\alpha = \sin 40 \cdot \frac{120}{\sin 10}$$

$$= 82.1$$

$$\tan 25^\circ = \frac{h}{82.1}$$
 $h = 82.1 \cdot \tan 25^\circ$
 $= 38.3$

.. The windmill is 38.3m high

13

Ex. 2 Annika and Balerie are standing at opposite ends of a bridge and Charles and Denis are standing in the river below. The angle between Annika's sightlines to Charlie and Denis is 34° and the angle between Balerie's sightlines to Charlie and Denis is 28°. How long is the bridge? Additional measurements are included in the diagram.

$$3^{2} = 19.3^{2} + 24.4^{2} - 2(19.3)(24.4) \cdot cos 76^{\circ}$$

 $3 = 27.7$

.. The bridge is 27.2m wide

Ex. 3 A cuboid is shown below. The cuboid has a length of 17 cm, a width of 5 cm, and a height of 8 cm. Determine the size of the angle that BH makes with the plane EFGH.

. The angle is 24.3°

Ex. 4 Determine the height of the helicopter (H).

Plan of approach

$$\chi^{2} = 200^{2} + 160^{2} - 2(200)(160)(0534^{\circ})$$

$$\chi = 112$$

$$\frac{y}{\sin 20} = \frac{112}{\sin 75^{\circ}}$$
 $y = 39.6$

$$\begin{array}{c} 3 \\ 2 \\ + BC = 180 - 75 - 20 \\ = 85^{\circ} \end{array}$$

$$h = 39.5$$

The helicopter is 39.5 km high

HOMEWORK page 265 #1, 2, 4, 5, 7, 12, 18

