Note: Use EXACT values and NO calculator where appropriate. Show the steps required to make your thinking visible.

- 1. For each of the following angles draw a diagram to show the angle in standard position and state two coterminal angle.
 - a) 75°

b) -243°

- c) 405^{0}
- 2. Given the following points on the terminal arms of an angle in standard position, determine the exact value of the six trigonometric ratios for the angle.
 - a) P(-5,7)

b) P(-6,5)

- c) P(-2, -3)
- 3. Determine the exact expression for the six trigonometric ratios for 330° .
- 4. Given $cos\theta = -\frac{\sqrt{3}}{2}$, determine the value(s) of $tan\theta$, $csc\theta$ and θ .
- 5. Determine two other angles that will have the same trig ratios as $sin\theta=-\frac{1}{2}$ but have different terminal arms.
- 6. Evaluate the following. Use exact values and no calculator, where appropriate.

cos210 ⁰	sec225 ⁰	cot-150°	tan-45 ⁰
csc280 ⁰	sin450 ⁰	cos180	sec240 ⁰

7. Determine the measure of θ for $0^0 \le \theta \le 360^0$ given each of the following ratios.

$cos\theta = \frac{1}{\sqrt{2}}$	$csc\theta = -2$	$tan\theta = \frac{3}{2}$	$sin\theta = -1$
$cot\theta = undefined$	$cos\theta = -\frac{1}{\sqrt{3}}$	$sec\theta = \frac{2}{\sqrt{3}}$	$tan\theta = -1.2$

- 8. Given $sin\theta = \frac{5}{7}$, for $90^0 \le \theta \le 180^0$, evaluate the exact value of $cos^2\theta sin\theta tan^2\theta$.
- 9. Calculate the following.
 - a) $cos45^{\circ}sin225^{\circ} + cos330^{\circ}$

b) $csc315^0sin^2(-120^0)cot225^0$