STATION A

- 1. The point (5,-7) lies on the terminal arm of angle $\boldsymbol{\theta}$. Determine the value of:
 - a) $\cos \theta$

- b) $\cot \theta$
- 2. If $\sec\theta = \frac{-8}{3}$, $180^{\circ} \le \theta \le 270^{\circ}$, determine the value of θ .
- 3. Determine the exact simplified value of the following. Show all your work.

$$(sin(-45^{\circ}))^{2}(cos210^{\circ})^{2} - (cos180^{\circ})(cot315^{\circ})$$

STATION B

- 1. Determine the value of the following. Use exact values where possible.
 - a) sin 225
- b) tan 120
- c) cos 160
- d) sec 330

- 2. State an expression equivalent to:
 - a) $\cos^2 \theta 1$
- b) $\frac{1}{\csc\theta}$
- c) $\frac{\cos^2\theta}{\sin^2\theta}$

STATION C

1. Determine the value of angle θ , for $0^{\circ} \le \theta \le 360^{\circ}$.

a)
$$\cos\theta = \frac{-\sqrt{2}}{2}$$

b)
$$\cot \theta = \sqrt{3}$$

c)
$$\sin\theta = -1$$

d)
$$\tan \theta = -2.1445$$

2. Determine the number of triangles possible. Do NOT solve.

a)
$$\triangle ABC$$
, $A = 135^{\circ}$, $a = 12cm$, $b = 9cm$

b)
$$\triangle DEF, D = 42^{\circ}, d = 5cm, e = 7cm$$

c)
$$\triangle GHI, G = 72^{\circ}, g = 17 \text{cm}, h = 15 \text{cm}$$

STATION D

Solve the following triangles. Include a diagram as part of your solution.

a)
$$\triangle ABC$$
, $B = 90^{\circ}$, $C = 50^{\circ}$, $a = 12cm$

b)
$$\triangle DEF$$
, D=110°, e=17.2cm, f=5.9cm

STATION E

- 1. Determine the value of the measure of the smallest angle in a triangle with sides of 4m, 6m, and 8m. Include a diagram as part of your solution.
- 2. Julia enters a road race that starts on Cavanagh Side Road. Runners leave point A and run for 8km at an angle of 24° to Cavanagh Side Road to reach checkpoint B. At checkpoint B runners turn and run 4 km to the finish line at point C which is also located on Cavanagh Side Road. When Julia finishes, how far is she from where she started the race?

STATION F

Prove the following identities.

a)
$$tanx + cotx = cscx secx$$

b)
$$\frac{\sin^2 x}{1-\cos x} = 1 + \cos x$$

STATION G

STATION H