MCV4U Practice Exam: Vector Component

Part A: Multiple Choice

For questions 1 to 12, select the best answer.

- **1.** Which is *not* an example of a vector?
 - A force
- **B** displacement
- C speed
- **D** velocity
- **2.** Which statement is *always* true?
 - A Parallel vectors have the same direction.
 - **B** Equivalent vectors have the same magnitude.
 - C Vectors are subtracted by adding the opposite.
 - **D** The resultant of two opposite vectors is the zero vector.
- **3.** Given vectors \vec{a} and \vec{b} and scalar k, which is meaningless?
 - $\mathbf{A} k \vec{a}$
- $\mathbf{B}\,\vec{a}\times b$
- $\mathbf{C} \vec{a} \cdot \vec{b}$
- $\mathbf{D} \vec{a} \vec{b}$
- **4.** In three space, which is the definition of skew lines?
 - A Lines that intersect in a point.
 - **B** Non-parallel, non-intersecting lines.
 - C Lines that are perpendicular.
 - **D** Lines that are parallel.
- 5. Which vector equation represents a line through A(4, 3, 1) and B(-2, 1, 0)?

$$\mathbf{A}[x, y, z] = [4, 3, 1] + t[-2, 1, 0]$$

B
$$[x, y, z] = [4, 3, 1] + t[2, 4, 1]$$

$$C[x, y, z] = [-2, 1, 0] + t[-6, -2, 1]$$

D
$$[x, y, z] = [4, 3, 1] + t[6, 2, 1]$$

- **6.** Which expression is equivalent to $2(3\vec{i} - \vec{j} + \vec{k}) - (\vec{i} + 2\vec{k})$?
 - **A** [5, 2, 0]
- **B** $[5\vec{i} 2\vec{j}]$
- **C** [5, 2, 4]
- $\mathbf{D} 5\vec{i} 2\vec{i}$

- 7. Which statement is *not* true?
 - A A line in two-space can be represented by a vector equation.
 - **B** A line in three-space can be represented by a scalar equation.
 - C A plane in three-space can be represented by a scalar equation.
 - **D** A plane in three-space can be represented by a vector equation.
- **8.** Which scalar equation represents the same line as [x, y] = [2, -2] + t[3, -1]?

$$\mathbf{A} \ 3x - y - 8 = 0$$

A
$$3x - y - 8 = 0$$
 B $x + 3y + 4 = 0$

$$C 3x + y - 4 = 0$$

- $\mathbf{D} x 3v + 8 = 0$
- **9.** Which expression is meaningless?
 - $\mathbf{A} \ \vec{a} \times \vec{b} \times \vec{c}$
- $\mathbf{C} \ \vec{a} \times \vec{b} \cdot \vec{c}$
- $\mathbf{B} \vec{a} \cdot \vec{b} \cdot \vec{c}$
- **D** $(\vec{a} \cdot \vec{b}) \times \vec{c}$
- **10.** Which statement is *not* correct?

$$\mathbf{A} \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\mathbf{B}\,\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

$$\mathbf{C} \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\mathbf{D} \vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$

11. Which expression represents a unit vector in the same direction as [1, 2, -1]? **A** [1, 1, 1] **B** $\frac{1}{\sqrt{6}}[1, 2, -1]$

$$\mathbf{B} \frac{1}{\sqrt{6}} [1, 2, -1]$$

$$\mathbf{D}\frac{1}{2}[1, 2, -1]$$

12. Which statement best describes π_1 and π_2 ?

$$\pi_1: 2x - y + 3z - 4 = 0$$

$$\pi_2$$
: $4x - 2y + 6z - 7 = 0$

- **A** π_1 and π_2 are parallel.
- **B** π_1 and π_2 intersect in a single point.
- $\mathbf{C} \pi_1$ and π_2 are parallel and coincident.
- $\mathbf{D} \, \pi_1$ and π_2 are parallel and distinct.

Part B: Extended Response

Show all the steps of each solution.

13. Consider this diagram.

- a) Name a vector that is equivalent to $\vec{a} \vec{b}$.
- **b)** Name a vector that is equivalent to $-\vec{b} \vec{a}$.
- **14.** The vertices of a triangle are P(-2, 3, 4), Q(3, -1, 1), and R(1, -2, -1).
 - a) Verify that $\triangle PQR$ is a right triangle.
 - **b)** Determine the area of $\triangle PQR$.
 - c) Determine the coordinates of S(x, y, z) such that PQRS is a rectangle.
- **15.** An airplane is headed N25°E with a constant velocity of 880 km/h. The plane encounters a wind blowing from S75°W at 65 km/h. Determine the resultant velocity of the plane.
- **16.** A crate with mass 20 kg is suspended from a crane by two chains that make angles of 50° and 35° to the horizontal. Determine the tension in each chain.

- **17.** Consider the vectors $\vec{u} = [-5, 1, -1]$ and $\vec{v} = [2, 4, -3]$.
 - a) Determine $\operatorname{proj}_{\vec{v}} \vec{v}$.
 - **b)** Determine $|\operatorname{proj}_{\vec{u}} \vec{v}|$.
- **18.** A force $\vec{F} = [200, 600, 400]$, measured in newtons, acts on an object. The displacement of the object, in metres, is defined by $\vec{d} = [2, 1, 10]$.
 - a) Determine the work done in the direction of travel.
 - **b)** Determine the work done against gravity, which is a force in the direction of the negative *z*-axis.
- 19. Determine the equation of a plane that contains the line [x, y, z] = [1, -2, 3] + t[4, 3, -5] and is parallel to the line [x, y, z] = [1, 0, 9] + t[3, -2, 8].
- **20.** Determine the intersection of the planes. π_1 : 3x - y + 4z - 1 = 0 π_2 : x + 2y + z + 7 = 0
- **21.** Determine the intersection of these planes. Describe the solution geometrically.

$$\pi_1: x + 3y + 2z - 5 = 0$$

$$\pi_2$$
: $2x - y - 4z - 4 = 0$

$$\pi_3$$
: $4x - 3y + z + 3 = 0$