Unit 1: Functions

1.1: Functions, Domain and Range

A. Relation vs. Function

Relation: An identified pattern between two variables

Can be represented as ordered pairs, table of values, graphs, equations

ex.
$$\{(-3,4), (-2,1), (-2,7), (5,-3)\}$$

Braces { } are used to represent a set. A set is a collection of items.

<u>Function</u>: A special type of relation in which for every x-value, there is <u>only one</u> corresponding y-value.

* All functions are relations but not all relations are functions.

Ex. 1 Which of the following relations are also functions?

c)
$$A = \{(3,4),(2,-1),(5,-1),(6,4)\}$$

How can we test if a relation is a function?

The Vertical Line Test

If a relation is graphed, it is a function if a vertical line crosses in no more than one place anywhere on the graph.

B. Domain and Range

Domain: The set of all input values (usually "x").

These are the values of x that can be used/make sense.

The set of all output values (usually "y"). Range:

These are the values of y that are possible given the input.

We use **set notation** to describe the domain and range.

$$D = \{ \} R = \{ \}$$

Ex. 2. State the domain and range.

$$R = \{-4, -3, -1\}$$

- Closed dot: Value exists at that point.
- Open dot: Value does not exist at that point.

g)
$$y = 5x - 2$$

$$R = \{y \in R\}$$

h)
$$y = -4(x - 3)^2 + 2$$

i)
$$x^2 + y^2 = 49$$

$$\chi^2 + y^2 = r^2$$

$$D = \{x \in \mathbb{R}\}$$

$$R = \{y \in \mathbb{R} | y \leq 2\}$$

$$R = \{y \in \mathbb{R} | -7 \leq y \leq 7\}$$

HOMEWORK 12 # C1 12* 2aba 4

p. 12 # C1, 1,2*, 3abc, 4bc, 5, 6*, 7a, 9ab, 12abcd, 17, 18

*Use Desmos to help sketch the graph (#2,6)

