1.5B: Working with Radicals - Day 2

Ex. 1 Multiply each of the following:

a)
$$4\sqrt{5}(2\sqrt{8} - 3\sqrt{5})$$

= $8\sqrt{40} - 12 \cdot 5$
= $16\sqrt{10} - 60$

How? Distributive Property. May need to simplify after multiplying.

b)
$$(2\sqrt{3} - \sqrt{5})(4\sqrt{3} + 2\sqrt{5})$$

 $= 8 \cdot 3 + 4\sqrt{15} - 4\sqrt{15} - 2 \cdot 5$
 $= 24 - 10$
 $= 14$
 $= 14$

c)
$$(2\sqrt{5} - \sqrt{3})^2$$

 $= (2\sqrt{5} - \sqrt{3})(2\sqrt{5} - \sqrt{3})$
 $= 4.5 - 2\sqrt{5} - 2\sqrt{5} + 3$
 $= 20 - 4\sqrt{5} + 3$
 $= 23 - 4\sqrt{5}$

Ex. 2 Simplify each of the following:

a)
$$\frac{12+3\sqrt{12}}{4}$$

$$=6+3\sqrt{3}$$

How many terms are in the numerator? Can the 4 be divided out?

$$=\frac{12}{4}+\frac{6\sqrt{3}}{4}=>=\frac{6}{2}+\frac{3\sqrt{3}}{2}$$

What is the GCF between 4, 6, 12?

b)
$$\frac{15 \pm \sqrt{27}}{3}$$

$$=5\pm\sqrt{3}$$

b) $\frac{15 \pm \sqrt{27}}{3}$ Look familiar? Quad formula

Ex. 3 Simplify - Rationalizing Denominators

a)
$$\frac{2}{\sqrt{5}}$$
 $\sqrt{5}$

b)
$$\frac{3\sqrt{5}}{4\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

a)
$$\frac{2}{\sqrt{5}}$$
 $\frac{\sqrt{5}}{\sqrt{5}}$ b) $\frac{3\sqrt{5}}{4\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ c) $\frac{5\sqrt{10}}{15\sqrt{20}} = \frac{\sqrt{6}}{3\sqrt{2}\sqrt{10}}$

$$\sqrt{5} \sqrt{5}$$

$$= \frac{3\sqrt{10}}{5}$$

$$= \frac{3\sqrt{10}}{4 \cdot 2}$$

$$= \frac{3\sqrt{10}}{8}$$

$$=\frac{1}{3\sqrt{2}}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}$$

 $=\frac{\sqrt{2}}{6}$

d)
$$\frac{1}{\sqrt[3]{2}}$$
 $\frac{\sqrt[3]{2}}{\sqrt[3]{2}}$ $\frac{\sqrt[3]{2}}{\sqrt[3]{2}}$ e) $\frac{1}{\sqrt[3]{32}}$

e)
$$\frac{1}{\sqrt[3]{32}}$$

$$=\frac{\sqrt[3]{4}}{2}$$

What if the denominator is a binomial?

f)
$$\frac{5}{2\sqrt{6}-\sqrt{3}} \cdot \frac{2\sqrt{6}+\sqrt{3}}{2\sqrt{6}+\sqrt{3}}$$

$$=\frac{1056+553}{4.6-3}$$

g)
$$\frac{\sqrt{2} + \sqrt{5}}{\sqrt{6} - \sqrt{10}}$$
 $\frac{\sqrt{6} + \sqrt{10}}{\sqrt{6} + \sqrt{10}}$

$$= \frac{\sqrt{12} + \sqrt{20} + \sqrt{30} + \sqrt{20}}{6 - 10}$$

You must multiply by the conjugate.

The conjugate of a + b is a - b. Change the sign between the two terms.

Why conjugates?
See a familiar pattern?

our binomial expension

$$(a-b)$$
 $(a+b)$

Homework

Handout

Mathematical Insults