1.6 Solve Quadratic Equations

Recall: Solving a quadratic equation means finding the value of the roots, zeros or x-intercepts. You are finding where the function, f(x) is zero.

A. Solve by Factoring

Ex. 1 Solve each of the following:

a)
$$f(x) = (x-3)(x+4)$$

b) $f(x) = x^2 + 7x - 30$
 $= (x-3)(x+4)$
 $= (x+10)(x-3)$
 $= (x+10)(x-3)$
 $= (x+10)(x-3)$
 $= (x+10)(x-3)$

$$f(x) = x^2 + 7x - 30$$

$$= (x+10)(x-3)$$

$$= (x+10)(x-3)$$

How do you find zeros?

- 1. Set f(x) = 0.
- 2. Factor.
- 3. Set each factor = 0 and solve for x.

c)
$$f(x) = 4x^{2} - 9$$

$$= (2x + 3)(2x - 3)$$

$$2x + 3 = 0$$

$$2x = -3$$

$$x = -\frac{3}{2}$$

$$x = -\frac{3}{2}$$

c)
$$f(x) = 4x^2 - 9$$
 d) $f(x) = 3x^2 + 12x$ e) Find the vertex of d)
$$= (2x + 3)(2x - 3)$$

$$2x + 3 = 0$$

$$3x +$$

$$= -15$$

$$= -15$$

$$= -15$$

B. Solve from Vertex Form

Ex. 1 Solve each of the following:

$$\mathcal{O}_{f(x)} = 2(x-3)^2 - 8$$

$$8 = 2(x-3)^2$$

$$4 = (x-3)^2$$

$$\pm \sqrt{4} = x-3$$

$$3 \pm 2 = x$$

$$= 1$$

- 1. Set y = 0.
- 2. Isolate for x

C. Solve using the Quadratic Formula

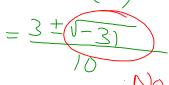
Requires Std form: ax^2+bx+c ***Ners

The quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$

Recall:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ex. 1 Solve. Give exact answers only.


$$a = 3$$
 $b = 4$ $c = -2$

a)
$$3x^2 + 4x - 2 = 0$$

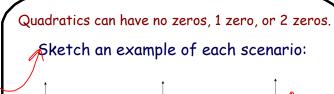
b)
$$5x^2 - 3x + 2 = 0$$

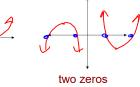
$$\chi = \frac{-b + \sqrt{b^2 - 4ac}}{2ac}$$

$$= \frac{3 \pm \sqrt{(-3)^2 - 4/5}(2)}{2(5)}$$

:No zerors

We can determine the number of roots


by looking under the radical sign


$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

This is known as the

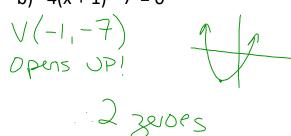
Discriminant

b²- 4ac

- If b^2 4ac > 0 then there is two real roots \Rightarrow
- If b^2 4ac = 0 then there is one real root
- If b^2 4ac < 0 then there is no real roots

Ex. 2 For each quadratic equation, determine the <u>number</u> of roots.

a)
$$2x^2 - x + 5 = 0$$


$$D = b^{2} - 4ac$$

$$= (-1)^{2} - 4(2)(5)$$

$$= 1 - 40$$

$$= -39$$
... No 100ts

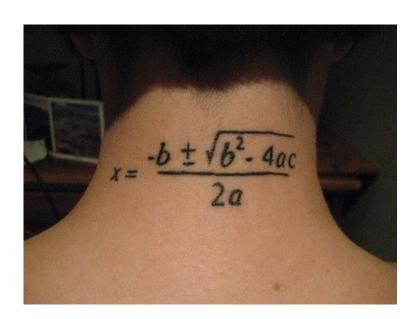
b)
$$4(x + 1)^2 - 7 = 0$$

c)
$$(x-6)^2 = 0$$

 $V(6,0)$ (on the axis!)
. One zero

d)
$$2x^2 + 8x + 8 = 0$$

$$D = b^{2} - 4ac$$


$$= 8^{2} - 4(2)(8)$$

$$= 64 - 64$$

$$= 0$$

One zero

Homework
p. 177 # 1, 2, 4, 5, 10, 13

