Lesson 1.7A: Determining a Quadratic Equation Given Its Roots

Recall: Quadratics can be represented in a number of different forms:

1

1.7A Determine a Quadratic Equation given its Roots.notebook

September 19, 2025

Ex. 1 Find the equation, in factored form, for a family of quadratic functions that has zeros at x = 4 and x = -3. Sketch three possible members of this family.

Ex. 2 Algebraically determine the equation of the quadratic function, in standard form, having only one x-intercept, at x = 2(double root), and containing the point (3,10).

- Expand into standard f
$$y = 10(x-2)^{2}$$

$$y = 10(x^{2}-4x+4)$$

- Stort with a form that
$$y = a(x-h)^2 + K$$

uses the data provided.

- Expand into standard form Sub in (2,0) for (h, K)

 $y = 10(x-2)^2$
 $y = 10(x^2 - 4x + 4)$

Sub in (3,10) to solve for a

 $y = 10x^2 - 40x + 40$
 $y = 4(x-2)^2$
 $y = 10(x^2 - 40x + 40)$
 $y = 4(x-2)^2$
 $y = 10(x^2 - 40x + 40)$

a = 10

Ex. 3 Algebraically determine an equation, in factored form, of the parabola that has x-intercepts $3+\sqrt{7}$ and $3-\sqrt{7}$, and that passes through the point (-5,3).

$$y = \alpha(x-r)(x-s)$$
Sub in introepts
$$y = \alpha(x-(3+\sqrt{7}))(x-(3-\sqrt{7}))$$

$$y = \alpha(x-3-\sqrt{7})(x-3+\sqrt{7})$$

$$3 = \alpha(-5-3-\sqrt{7})(-5-3+\sqrt{7})$$

$$3 = \alpha(-8-\sqrt{7})(-8+\sqrt{7})$$

$$3 = \alpha(64-8\sqrt{7}+8\sqrt{7}-7)$$

$$3 = \alpha(57)$$

$$\frac{3}{57} = \alpha$$

$$\frac{1}{19} = \alpha$$

- Ex. 4 The parabolic opening to a tunnel is 32 m wide measured from side to side along the ground. At points 4 m from each side, the tunnel entrance is 6 m high.
 - a) Sketch a diagram of the given information.
 - b) Determine the equation of the function that models the opening to the tunnel.

c) Find the maximum height of the tunnel, to the nearest tenth.

$$y = \alpha(x-r)(x-5)$$

$$y = \alpha(x)(x-32)$$

$$y = \alpha(x)(x-32)$$

$$y = \alpha(x-32)$$

$$0 =$$

 $-\frac{3}{56} = a$ $f(x) = -\frac{3}{56}x(x-32)$

HOMEWORK

p. 192 # 2, 4, 5, 6, 8, 10

