Lesson 2.3B: Horizontal and Vertical Translations of Functions

Part A: Vertical Translations

Using Desmos, describe the transformations to the base graph in each case.

Graph a couple of equations at a time so that you can see the transformation from the base function.

a)
$$f(x) = x^2$$

BASE FUNCTION

b)
$$g(x) = f(x) + 5$$

b) g(x) = f(x) + 5 graph moves $\bigcirc \bigcirc \bigcirc$

c)
$$h(x) = f(x) - 3$$

c) h(x) = f(x) - 3 graph moves \bigcirc

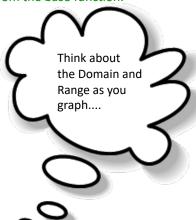
$$d) f(x) = \sqrt{x}$$

e)
$$g(x) = f(x) + 4$$

d) $f(x) = \sqrt{x}$ BASE FUNCTION e) g(x) = f(x) + 4 graph moves

$$f) h(x) = f(x) - 2$$

f) h(x) = f(x) - 2 graph moves



Try graphing the base function along with each of these:

g)
$$m(x) = \frac{1}{x} + 3$$

g) $m(x) = \frac{1}{x} + 3$ Base Function: $\frac{1}{x}$ graph moves $\bigcirc \bigcirc$

h)
$$n(x) = x^3 - 5$$

h) $n(x) = x^3 - 5$ Base Function: χ 3 graph moves χ

General Result

g(x) = f(x) + c is a vertical transfation of the graph of f(x).

If c > 0, the graph of f(x) moves $\cup P \subset \cup \cap \overline{\downarrow}$ If c < 0, the graph of f(x) moves down c with

The domain <u>does not change</u>. The range <u>can c</u> x-values are <u>unaffected</u>. y-values are <u>affected</u>.

c is OUTSIDE of the function so no x-values change.

Part B - Horizontal Translations

Graph the following using Desmos and compare to the base function.

- 1. Graph $f(x) = x^2$ and the equations below. Describe the transformations.

 - a) g(x) = f(x+4) LEFT 4 b) h(x) = f(x-2) RIGHT 2
- 2. Graph $f(x) = \sqrt{x}$ and the equations below. Describe the transformations.

 - a) g(x) = f(x+1) LEFT | County 4

General Result g(x) = f(x - d) is A hor 30 tell + 30 tell 40 of the graph of f(x).**General Result** If d > 0, the graph of f(x) moves RIGHT D onits

If d < 0, the graph of f(x) moves

LEFT D units The domain <u>Can-Change</u>. The range <u>does</u> ist <u>change</u> x-values are <u>affected</u>. y-values are <u>not affected</u>

This transformation is the opposite of what you think because the x-coord must compensate for its change in order for the y-coord to stay the same.

d is $\frac{100 \le 100}{100}$ the function so no y-values change.

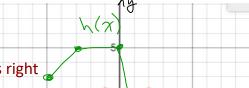
Ex. 1: Given the graph of f(x) shown below, graph:

Graphing Process

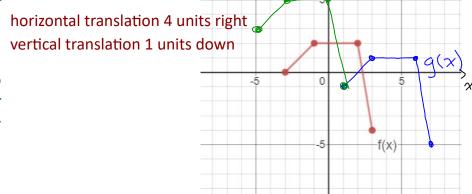
- Plot 3 to 5 base points from the parent function.
- Transform these points in order to create the graph.

• Use mapping notation to find the coordinates of the transformed points.

a) g(x) = f(x-4)-1



- b) h(x) = f(x+2)+3
 - h.t. 2 units left
 - v.t. 3 units up



Mapping Notation $(x,y) \rightarrow (x+d,y+c)$

$$(x,y) \rightarrow (x+d,y+c)$$

Ex. 2: Find the equation of g(x) = f(x+1) - 3 if:

a)
$$f(x) = x^2$$
 2
 $f(x+1) - 3 = (x+1) - 3$

a)
$$f(x) = x^2$$
 b) $f(x) = x^3$ $f(x+1)-3 = (x+1)^3 - 3$

c)
$$f(x) = \sqrt{x}$$

$$d) \quad f(x) = \frac{1}{x}$$

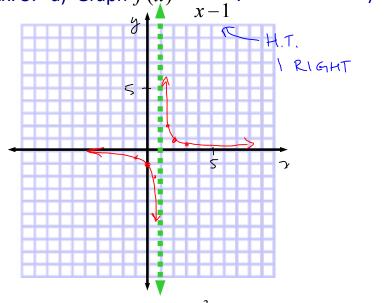
c)
$$f(x) = \sqrt{x}$$

 $f(x+1) - 3 = \sqrt{x+1} - 3$

$$f(x+1)-3 = \frac{1}{x+1} - 3$$

olution

Ex. 3: a) Graph $f(x) = \frac{1}{x-1}$.



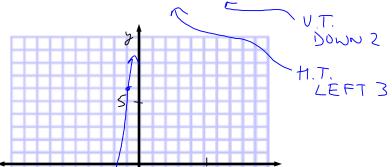
b) State the domain and range.

$$D: \{x \in R \mid x \neq 0\}$$

$$R: \{y \in R \mid y \neq 0\}$$

$$D: \left\{ x \in \mathbb{R} \left| x \neq 1 \right. \right\}$$

b) Graph $f(x) = (x+3)^3 - 2$.



 $D: \{x \in R\} \checkmark$ $R: \{y \in R\} \checkmark$

HOMEWORK p. 51 #1 p. 70 # 7a, &a, 10ab

+ Extra Practice Sheet 2.3B

