Lesson 2.4: Reflections A reflection creates a mirror image.

Reflection in the x-axis (vertical reflection). Α.

What do you notice about the y-values?

What do you notice about the x-values?

Invariant points are on the x-axis.

Ex. 1:

a) Graph $f(x) = (x - 3)^2 + 5$

c) Graph g(x).

d) List any invariant points.

State the domain and range of f(x) and g(x).

$$f(x): D = \{ \chi \in \mathbb{R} \} \iff g(x): D = \{ \chi \in \mathbb{R} \}$$

$$R = \{ y \in \mathbb{R} | y \ge 5 \} \qquad R = \{ y \in \mathbb{R} | y \le -5 \}$$

Ex. 2:
$$\sqrt{x}$$
a) Graph $f(x) = \sqrt{x+2} + 3$
 \sqrt{x}
 \sqrt{x}

Find the equation of g(x) = -f(x). b)

$$g(x) = -\left(\sqrt{x+2} + 3\right)$$
$$= -\sqrt{x+2} - 3$$

List any invariant points. d) NONE

State the domain and range of f(x) and g(x). e)

$$f(x): D = \left\{ \begin{array}{c} \chi \in \mathbb{R} \\ R = \end{array} \right\} \begin{array}{c} \chi \geq -2 \\ \chi \geq 3 \end{array} \qquad g(x): D = \left\{ \begin{array}{c} \chi \in \mathbb{R} \\ \chi \geq -2 \end{array} \right\}$$

$$R = \left\{ \begin{array}{c} \chi \in \mathbb{R} \\ \chi \geq 3 \end{array} \right\}$$

$$R = \left\{ \begin{array}{c} \chi \in \mathbb{R} \\ \chi \geq -3 \end{array} \right\}$$

В. Reflection in the y-axis (horizontal reflection).

$$y = f(x)$$

What do you notice about the x-values?

What do you notice about the y-values?

Invariant points are on the y-axis.

Ex. 3:

a) Graph
$$f(x) = (x + 4)^2$$

b) Find the equation of g(x) = f(-x).

$$o_{y}(x) = (-x + 4)^{2}$$

$$= (-1)^{2}(x - 4)^{2}$$

$$= (x - 4)^{2}$$

Graph g(x).

d) List any invariant points.

Anything on y-axis! Set
$$x=0$$

$$f(0) = (0+4)$$

$$= 16$$

$$5et x=0$$

 $f(0) = (0+4)^{2}$
 $= 16$

- State the domain and range of f(x) and g(x).

$$f(x): D = \{ \gamma \in \mathbb{R} \}$$

$$R = \{ \gamma \in \mathbb{R} \mid y \ge 0 \}$$

$$f(x): D = \{ \gamma \in \mathbb{R} \}$$

$$R = \{ \gamma \in \mathbb{R} \mid \gamma \geq 0 \}$$

$$g(x): D = \{ \gamma \in \mathbb{R} \}$$

$$R = \{ \gamma \in \mathbb{R} \mid \gamma \geq 0 \}$$

$$R = \{ \gamma \in \mathbb{R} \mid \gamma \geq 0 \}$$

Ex. 4

a) Graph
$$f(x) = \frac{1}{x-2}$$
RIGHT 2

b) Find the equation of g(x) = f(-x).

$$g(x) = \frac{1}{-x-2}$$
$$= \frac{1}{-1(x+2)}$$

Verlight = - 1 X+2 LEFT 2

c) Graph g(x).

d) List any invariant points.

$$y = -\frac{1}{2}$$

$$= -\frac{1}{2}$$
(0, $-\frac{1}{2}$)

State the domain and range of f(x) and g(x).

$$f(x): D = \begin{cases} x \in \mathbb{R} \mid x \neq 2 \end{cases}$$

$$R = \begin{cases} y \in \mathbb{R} \mid y \neq 0 \end{cases}$$

$$f(x): D = \{x \in \mathbb{R} \mid x \neq 2\}$$

$$R = \{y \in \mathbb{R} \mid y \neq 0\}$$

$$g(x): D = \{x \in \mathbb{R} \mid x \neq -2\}$$

$$R = \{y \in \mathbb{R} \mid y \neq 0\}$$

Summary

If y = f(x), then:

y = - f(x) represents a reflection in $\frac{x-\alpha \times 15}{x}$

Under a reflection in the $\underline{\chi}$ -axis, the point $(x, y) \Rightarrow (\underline{\chi}, \underline{-\chi})$. Invariant points are located χ -ints

y = f(-x) represents a reflection in $y - \alpha \times 15$.

Under a reflection in the y-axis, the point $(x, y) \Rightarrow (-x, y)$.

Invariant points are located y - y = 0.

y = - f(-x) represents a reflection in $\underline{\hspace{1cm}} \times - \propto \times i \leq \underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}} \times - \propto \times i \leq \underline{\hspace{1cm}}$. The order of these reflections does not matter. Under these reflections, the point $(x, y) \Rightarrow (\underline{\hspace{1cm}} \times , \underline{\hspace{1cm}} -\underline{\hspace{1cm}} y)$.

Given
$$f(x) = |x-3|$$

- a) Graph f(x).
- b) Find the equation of g(x) = -f(-x). Graph g(x).

Homework
Handout Sheet 2.4
Extra Practice 2.4

